Vol 22, No 6 (2017)

Articles

CANONICAL AND BOUNDARY REPRESENTATIONS ON THE LOBACHEVSKY PLANE ASSOCIATED WITH LINEAR BUNDLES

Grosheva L.I.

Abstract

We describe canonical representations on the Lobachevsky plane, associated with sections of linear bundles, corresponding boundary representations and Poisson and Fourier transforms.
Russian Universities Reports. Mathematics. 2017;22(6):1218-1228
pages 1218-1228 views

ON POSITIVITY OF THE GREEN FUNCTION FOR POISSON PROBLEM FOR A LINEAR FUNCTIONAL DIFFERENTIAL EQUATION

Labovskiy S.M.

Abstract

For the Poisson problem -∆u+p x u- Ωu s r x, ds=ρf, u | Γ( Ω )=0 equivalence of positivity of the Green function and other classical properties is showed. Here Ω is an open set in R n , and Γ( Ω ) is the boundary of the Ω . For almost all x∈ Ω , r(x, ∙) is a measure satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation -∆u+p x u(x)- i=1 m p i x u h i x =ρf, where h i : Ω→Ω is a measurable mapping.
Russian Universities Reports. Mathematics. 2017;22(6):1229-1234
pages 1229-1234 views

BEREZIN QUANTIZATION AS A PARTOF THE REPRESENTATION THEORY

Molchanov V.F.

Abstract

We present an approach to polynomial quantization (a variant of quantization in the spirit of Berezin) on para-Hermitian symmetric spaces using the notion of an "overgroup". This approach gives covariant and contravariant symbols and the Berezin transform in a highly natural and transparent way.
Russian Universities Reports. Mathematics. 2017;22(6):1235-1246
pages 1235-1246 views

ABOUT EXISTENCE AND ESTIMATION OF SOLUTION TO ONE INTEGRAL INCLUSION

Benarab S., Merchela W., Panasenko E.A.

Abstract

An inclusion with multi-valued mapping acting in spaces with vector-valued metrics is under discussion. It is shown that, if a multi-valued mapping F can be written as F(x)= Y(x, x), where the mapping Y is closed and metrically regular with some operator coefficient K with respect to one argument, Lipschitz with operator coefficient Q with respect to the other argument, and the spectral radius of the operator KQ is less than one, then the inclusion F(x) ∋ y is solvable. The estimations of the vector-valued distance from a solution x of the inclusion to a given element x 0 are derived. In the second part of the paper, these results are used to investigate an integral inclusion of the implicit type with respect to the unknown integrable function.
Russian Universities Reports. Mathematics. 2017;22(6):1247-1254
pages 1247-1254 views

ONE ESTIMATE OF FIXED POINTS AND COINCIDENCE POINTS OF MAPPINGS OF METRIC SPACES

Borzova M.V., Zhukovskiy E.S., Chernikova N.Y.

Abstract

For single-valued and multi-valued mappings acting in a metric space X and satisfying the Lipschitz condition, we propose a lower estimate of the distance from a given element x 0 ∈ X to a fixed point. Thus, we find r >0 such that there are no fixed points in the ball with center at x 0 of radius r . The proof follows directly from the triangle inequality. The result is extended to (q 1 , q 2 ) - metric spaces. An analogous estimate is obtained for coincidence points of covering and Lipschitz mappings of metric spaces.
Russian Universities Reports. Mathematics. 2017;22(6):1255-1260
pages 1255-1260 views

ON ONE INVERSE PROBLEM OF SOURCES DENSITY DISTRIBUTION RECONSTRUCTION IN A MIXED BOUNDARY VALUE PROBLEM FOR THE POISSON EQUATION

Gerasimova A.V., Laneev E.B., Muratov M.N., Ponomarenko E.Y., Surovtsev V.V.

Abstract

An inverse problem with mixed boundary value conditions for the Poisson equation for bodies of constant thickness is considered, aiming to reconstruct the sources density distribution. A stable solution of the problem is obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1261-1267
pages 1261-1267 views

THE SYMBOLIC SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS IN THE COMPUTER ALGEBRA SYSTEM MATH PARTNER

Glazkov S.A., Rybakov M.A.

Abstract

The article deals with algorithms of symbolic solution of ordinary differential equations, their software implementation in the computer algebra system Math Partner. Classes are described for solving differential equations with separable variables, homogeneous differential equations, and equations in complete differentials.
Russian Universities Reports. Mathematics. 2017;22(6):1268-1276
pages 1268-1276 views

APPLICATION OF THE EXISTENCE THEOREM AND ESTIMATE OF SOLUTIONS OF THE PERTURBED INCLUSION TO THE STUDY OF THE PERTURBED LINEAR PROBLEM

Grigorenko A.A.

Abstract

In the article, a statement about estimation of the closeness of solutions of the perturbed inclusion to a given continuous function is formulated. An application of this statement to the study of perturbation of a linear boundary value problem for functional-differential equations is considered.
Russian Universities Reports. Mathematics. 2017;22(6):1277-1284
pages 1277-1284 views

ABOUT ONE QUASI-METRIC SPACE

Zhukovskaya T.V., Zhukovskiy E.S.

Abstract

The M -space (X, ρ) is defined as a non-empty set X with distance ρ :X 2 →R+ satisfying the axiom of identity and the weakened triangle inequality. The M -space (X, ρ) belongs to the class of f -quasi-metric spaces, and the map ρ may not be ( c1 , c2 ) -quasi-metric for any values of c 1 , c 2 ; and ( c1 , c2 ) -quasi-metric space may not be an M -space. The properties of the M -space are investigated. An extension of the Krasnosel’skii theorem about a fixed point of a generally contracting map to the M -space is obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1285-1292
pages 1285-1292 views

LINEARLY-QUADRATIC HOMEOMORPHISMS

Zhukovskiy S.E.

Abstract

Linearly-quadratic mappings of finite-dimensional linear spaces over reals are considered. A criterion for a linearly-quadratic mapping to be a homeomorphism is obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1293-1297
pages 1293-1297 views

ON MINIMA OF FUNCTIONALS AND IMPLICIT DIFFERENTIAL EQUATIONS

Zhukovskiy S.E.

Abstract

The stability of Caristi-like conditions under small Lipschitz perturbations is proved for functionals on metric spaces. The result obtained is used for the investigation of implicit differential equation. Sufficient conditions for solvability of Cauchy problem for implicit ordinary differential equations are obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1298-1303
pages 1298-1303 views

ON THE APPLICATION OF THE RESULTS OF COVERING MAPPINGS THEORY FOR THE STUDY OF DYNAMICAL MODELS OF ECONOMIC PROCESSES

Pavlova N.G.

Abstract

The paper is a study of the existence of equilibruim points in the dynamic Walrasian-Evans-Samuelson model. Sufficient conditions for the existence of the vector-function of equilibruim prices are derived from the existence theorems for coincidence points of Lipschitz continuous and covering mappings.
Russian Universities Reports. Mathematics. 2017;22(6):1304-1308
pages 1304-1308 views

ON COINCIDENCE POINTS OF TWO MULTI-VALUED MAPPINGS IN SPACES WITH VECTOR-VALUED METRICS

Pluzhnikova E.A., Moiseev Y.A., Repin A.A.

Abstract

Spaces with vector-valued metrics are considered. The values of a vector-valued metric are elements of a cone in some linear normed space. The concept of covering (metric regularity) for multi-valued mappings in spaces with vector-valued metrics is formulated. A statement about coincidence points of a metrically regular and a Lipschitz multi-valued mappings in spaces with vector-valued metrics is obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1309-1313
pages 1309-1313 views

ON ONE METHOD OF STUDYING IMPLICIT SINGULAR DIFFERENTIAL INCLUSIONS

Pluzhnikova E.A., Shindiapin A.I.

Abstract

We propose a method of studying singular differential inclusions based on the representation of such an inclusion in the form of an operator inclusion in some space of measurable functions depending on the type of a given singularity. To the operator inclusion we apply the results on Lipschitz perturbations of multi-valued covering mappings. The article consists of three sections. In the first one we give the necessary definitions and formulate the theorem [A. Arutyunov, V.A. de Oliveira, F.L. Pereira, E. Zhukovskiy, S. Zhukovskiy // Applicable Analysis, 2015, 94, № 1] on the Lipschitz perturbations of multi-valued covering mappings. In the second section we introduce special metric spaces of integrable functions and obtain sufficient conditions of covering for the multi-valued Nemytskii operator in such spaces. Finally, using the mentioned results, we derive the existence conditions for the Cauchy problem for an implicit singular differential inclusion.
Russian Universities Reports. Mathematics. 2017;22(6):1314-1320
pages 1314-1320 views

СANONICAL SUBSPACES OF SOME REPRESENTATIONS OF SEMISIMPLE LINEAR LIE GROUPS

Popov A.M.

Abstract

The canonical subspaces for some representations of semisimple linear Lie groups with finite isotropy subgroup in general position are resulted.
Russian Universities Reports. Mathematics. 2017;22(6):1321-1324
pages 1321-1324 views

ON FIXED POINTS OF CONTRACTION MAPPINGS ACTING IN GENERALIZED (q1, q2) -QUASIMETRIC SPACES

Sengupta R.

Abstract

Generalized ( q1 , q2 ) -quasimetric spaces are considered. For contraction mappings in these spaces sufficient conditions for existence of fixed points are obtained.
Russian Universities Reports. Mathematics. 2017;22(6):1325-1328
pages 1325-1328 views

THE EXISTENCE AND ESTIMATES OF SOLUTIONS OF THE CAUCHY PROBLEM FOR A NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATION

Tahir K.M.

Abstract

We obtain an assertion about functional-differential inequality analogous to the well-known theorem of Chaplygin. The result can be used to find estimates of solutions of specific functional-differential equations.
Russian Universities Reports. Mathematics. 2017;22(6):1329-1334
pages 1329-1334 views

METHOD OF ANALYSIS OF HIERARCHIES AND CONSTRUCTION INTEGRATED PARAMETERS FOR MULTIPLE SYSTEMS

Finogenko I.A., D’yakovich M.P.

Abstract

In article the method of construction of integrated parameters for the systems having hierarchical structure is offered. Feature of researched systems will be their multidimensionality and heterogeneity of characteristics making them. The problem of construction of a complex estimation of a condition of such objects or processes is actual for various branches of knowledge (economy, ecology, medicine). From the mathematical point of view construction of integrated parameters concerns to problems multicriteria the analysis of hierarchies, therefore a first step at construction of an integrated parameter is decomposition of object on parts making it. Such decomposition is convenient for representing as the graph. We use a linear function - the enclosed linear convolution with weight factors of the importance of each criterion to make a scalar function from vector criterion. Weight factors are in turn determined by method of hierarchy’s analysis, allowing to translate qualitative gradation of a condition of system in quantitative. Further the integrated parameter is considered as the criterion function subject to improvement in some optimum image.
Russian Universities Reports. Mathematics. 2017;22(6):1335-1340
pages 1335-1340 views

ON MULTIPLICATION OF SYMBOLS IN POLYNOMIAL QUANTIZATION

Tsykina S.V.

Abstract

We consider a multiplication of covariant and contravariant symbols in polynomial quantization on para-Hermitian symmetric spaces.
Russian Universities Reports. Mathematics. 2017;22(6):1341-1345
pages 1341-1345 views

AGGREGATION OF NEIGHBORHOOD SYSTEMS IN THE MODEL OF VENTILATION OF CEMENT PRODUCTION WORKSHOP

Shmyrin A.M., Mishachev N.M., Semina V.V.

Abstract

The article considers an example of aggregation (merging) of neighborhood systems in the problem of mathematical modeling of the ventilation system of the cement production workshop. The aim of simulation is to optimize the operation of the ventilation system according to the criteria of energy consumption and environmental friendliness.
Russian Universities Reports. Mathematics. 2017;22(6):1346-1354
pages 1346-1354 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».