О ТОЧКАХ СОВПАДЕНИЯ ДВУХ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ В ПРОСТРАНСТВАХ С ВЕКТОРНОЗНАЧНОЙ МЕТРИКОЙ

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрены пространства с векторнозначной метрикой, значениями которой являются элементы конуса линейного нормированного пространства. Для многозначных отображений сформулировано понятие накрывания (метрической регулярности) в пространствах с векторнозначной метрикой. Получено утверждение о точках совпадения метрически регулярного и липшицева многозначных отображений в пространствах с векторнозначной метрикой.

Об авторах

Елена Александровна Плужникова

Тамбовский государственный университет им. Г.Р. Державина; Российский университет дружбы народов

Email: pluznikova_elena@mail.ru
кандидат физико-математических наук, доцент кафедры функционального анализа; доцент кафедры нелинейного анализа и оптимизации 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33; 117198, Российская Федерация, г. Москва, ул. Миклухо-Маклая, 6

Юрий Анатольевич Моисеев

Тамбовский государственный университет им. Г.Р. Державина

Email: aaaum@yandex.ru
аспирант, кафедра функционального анализа 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Алексей Анатольевич Репин

Тамбовский государственный университет им. Г.Р. Державина

Email: aleksejjrepin@rambler.ru
аспирант, кафедра функционального анализа 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Список литературы

  1. Жуковский Е.С., Плужникова Е.А. Многозначные накрывающие отображения пространств с векторнозначной метрикой в исследовании функциональных включений // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 6. С. 1974-1982.Жуковский Е.С. О точках совпадения векторных отображений // Известия высших учебных заведений. Математика. 2016. № 10. С. 14-28.Zhukovskiy E.S. On coincidence points of multivalued vector mappings of metric spaces // Mathematical Notes. 2016. V. 100. № 3-4. P. 363-379.Arutyunov A.V., Zhukovskiy S.E., Zhukovskiy E.S. Coincidence points principle for set-valued mappings in partially ordered spaces // Topology and its Applications. 2016. V. 201. P. 330-343.Арутюнов А.В. Точки совпадения двух отображений // Функциональный анализ и его приложения. 2014. Т. 48. № 1. С. 89-93.Арутюнов А.В. Задача о точках совпадения многозначных отображений и устойчивость по Уламу-Хайерсу // Доклады Академии наук. 2014. Т. 445. № 4. С. 379-383.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).