Vol 219 (2023)

Articles

Multiplications on torsion-free groups of finite rank

Kompantseva E.I., Tuganbaev A.A.

Abstract

A multiplication on an Abelian group G is an arbitrary homomorphism μ: G G G. The set MultG of all multiplications on an Abelian group G is itself an Abelian group with respect to addition. In this paper, we discuss the multiplication groups of groups from the class A0 of all Abelian block-rigid, almost completely decomposable groups of ring type with cyclic regulatory factors. We show that for any group G from the class A0, the group MultG also belongs to this class. The rank, regulator, regulator index, almost isomorphism invariants, principal decomposition, and standard representation of the group MultG for G ∈ A0 are described.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:3-15
pages 3-15 views

Automorphisms of matrix rings

Krylov P.A., Tuganbaev A.A.

Abstract

We examine the automorphism groups of algebras of formal matrices. We also consider automorphisms of ordinary matrix algebras (in particular, algebras of triangular matrices).

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:16-38
pages 16-38 views

On realization and isomorphism problems for formal matrix rings

Krylov P.A., Tuganbaev A.A.

Abstract

We consider realization and isomorphism problems for formal matrix rings over a given ring. Principal multiplier matrices of such rings play an important role in this case.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:39-43
pages 39-43 views

Centrally essential semirings

Lyubimtsev O.V., Tuganbaev A.A.

Abstract

A semiring is said to be centrally essential if, for every nonzero element x, there exist nonzero central elements y and z such that xy = z. We give several examples of noncommutative centrally essential semirings and describe some properties of additively cancellative, centrally essential semirings.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:44-49
pages 44-49 views

Maximal and minimal ideals of centrally essential rings

Lyubimtsev O.V., Tuganbaev A.A.

Abstract

We show that a ring R with center Z(R) such that the module RZ(R) is an essential extension of the module Z(R)Z(R) need not be right quasi-invariant, i.e., not all maximal right ideals of the ring R are ideals. In terms of the central essentiality property, we obtain sufficient conditions for the fact that all maximal right ideals are ideals.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:50-53
pages 50-53 views

Centrally essential semigroup algebras

Lyubimtsev O.V., Tuganbaev A.A.

Abstract

For a cancellative semigroup S and a field F, we prove that the semigroup algebra FS is centrally essential if and only if the group of fractions GS of the semigroup S exists and the group algebra FGS of GS is centrally essential. The semigroup algebra of a cancellative semigroup is centrally essential if and only if it has the classical right ring of fractions, which is a centrally essential ring. There exist noncommutative, centrally essential semigroup algebras over fields of zero characteristic (this contrasts with the known fact that centrally essential group algebras over fields of zero characteristic are commutative).

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:54-59
pages 54-59 views

Centrally essential rings and semirings

Tuganbaev A.A.

Abstract

In this survey, we systematically examine rings and semirings that are either commutative or satisfy the following condition: for any noncentral element a, there exist nonzero central elements x and y such that ax = y.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;219:60-130
pages 60-130 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).