Centrally essential semigroup algebras

Cover Page

Cite item

Full Text

Abstract

For a cancellative semigroup S and a field F, we prove that the semigroup algebra FS is centrally essential if and only if the group of fractions GS of the semigroup S exists and the group algebra FGS of GS is centrally essential. The semigroup algebra of a cancellative semigroup is centrally essential if and only if it has the classical right ring of fractions, which is a centrally essential ring. There exist noncommutative, centrally essential semigroup algebras over fields of zero characteristic (this contrasts with the known fact that centrally essential group algebras over fields of zero characteristic are commutative).

About the authors

O. V. Lyubimtsev

Нижегородский государственный университет им. Н. И. Лобачевского

Author for correspondence.
Email: oleg_lyubimcev@mail.ru
Russian Federation, Нижний Новгород

A. A. Tuganbaev

Национальный исследовательский университет «МЭИ»; Московский государственный университет им. М. В. Ломоносова

Email: tuganbaev@gmail.com
Russian Federation, Москва; Москва

References

  1. Clifford A. H., Prieston G. B. The Algebraic Theory of Semigroups. — Providence, Rhode Island: Am. Math. Soc., 1961.
  2. Lyubimtsev O. V., Tuganbaev A. A. Centrally essential endomorphism rings of abelian groups// Commun. Algebra. — 2020. — 48, № 3. — P. 1249–1256.
  3. Lyubimtsev O. V., Tuganbaev A. A. Centrally essential torsion-free rings of finite rank// Beitr. Algebra Geom. — 2021. — 62, № 3. — P. 615–622.
  4. Lyubimtsev O. V., Tuganbaev A. A. Centrally essential group algebras and classical rings of fractions// Lobachevskii J. Math. — 2021. — 42, № 12. — P. 2890–2894.
  5. Markov V. T., Tuganbaev A. A. Centrally essential group algebras// J. Algebra. — 2018. — 512, № 15. — P. 109–118.
  6. Markov V. T., Tuganbaev A. A. Rings essential over their centers// Commun. Algebra. — 2019. — 47, № 4. — P. 1642–1649.
  7. Markov V. T., Tuganbaev A. A. Uniserial Noetherian centrally essential rings// Commun. Algebra.— 2020. — 48, № 1. — P. 149–153.
  8. Okniński J. Semigroup Algebras. — New York–Basel: Marcel Dekker, 1991.
  9. Passman D. S. The Algebraic Structure of Group Rings. — New York: Wiley, 1977.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Lyubimtsev O.V., Tuganbaev A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).