Foreign language teachers’ professional development in the AI era: requirements, competences, and formation stages

Cover Page

Cite item

Full Text

Abstract

Importance. The active development of artificial intelligence (AI) technologies and their integration into education is creating a gap between the potential of AI and the actual readiness of teachers to apply these tools effectively and critically in their professional practice. The study presents a comprehensive analysis and the stages of forming AI competence in foreign language teachers.

Materials and Methods. The research is based on an interdisciplinary approach and an analysis of Russian and international scientific sources. The empirical base consisted of survey (60 participants) and reflexive questionnaire (50 participants) results received from foreign language teachers who completed a professional development course at the Faculty of Foreign Languages and Area Studies of Lomonosov Moscow State University from May to June 2025. The survey was aimed at diagnosing the level of awareness, readiness, and practical use of AI technologies, as well as identifying professional needs. A reflexive questionnaire method is used to collect qualitative data, allowing to obtain teachers’ subjective assessment.

Results and Discussion. The study presents and substantiates the structure of AI competence for foreign language teachers, outlines the stages of its formation, and refines the concept and structure of neurolinguodidactic competence. A comparative analysis of international and Russian approaches to forming the structure of AI competence is provided, along with a practice-tested model of professional development for foreign language teachers in the field of artificial intelligence.he obtained data indicate that the course contributed to the development of both theoretical knowledge and practical skills necessary for teaching foreign languages with AI support.

Conclusion. The practical significance of the study lies in the development of a ready-toimplement professional development model. However, key aspects requiring further attention and refinement were identified: the volume of information, technical difficulties with the distance learning platform, and the need to expand the language support of AI tools. Research prospects are associated with the adaptation of the proposed model for various pedagogical contexts and its further optimisation considering the identified difficulties.

About the authors

S. V. Titova

Lomonosov Moscow State University

Email: stitova3@gmail.com
ORCID iD: 0000-0002-7930-3893
SPIN-code: 1831-5730
Scopus Author ID: 56600196700119991
ResearcherId: P-9653-2015

Dr. Sci. (Education), Professor, Head of Theory of Teaching Foreign Languages Department of Foreign Languages and Area Studies Faculty, Deputy Dean for Continuous Professional Education

Russian Federation, 1 Leninskiye Gory, Moscow, 119991, Russian Federation

K. T. Temuryan

Lomonosov Moscow State University

Author for correspondence.
Email: temuryan.study@yandex.ru
ORCID iD: 0000-0001-6851-0486
SPIN-code: 6080-1632
ResearcherId: ABB-2996-2021

Post-Graduate Student, Lecturer of Language Teaching Theory Department of Foreign Languages and Area Studies Faculty

Russian Federation, 1 Leninskiye Gory, Moscow, 119991, Russian Federation

References

  1. Evstigneev M.N., Sysoev P.V., Evstigneeva I.A. (2024). The competence of a foreign language teacher in the field of artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 90-96. (In Russ.) https://elibrary.ru/auprsp
  2. Sysoyev P.V. (2025). A modern teacher’s competence in the field of artificial intelligence: structure and content. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 34, no. 6, pp. 58-79. (In Russ.) https://doi.org/10.31992/0869-3617-2025-34-6-58-79, https://elibrary.ru/zjmqfd
  3. Titova S.V., Kharlamenko I.V. (2025). Training of staff for the use of artificial intelligence in foreign lan-guage teaching. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikat-siya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, vol. 28, no. 1, pp. 66-84. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-28-1-5, https://elibrary.ru/froxrr
  4. Titova S.V., Kharlamenko I.V. (2025). The framework of professional competence for foreign language teachers utilizing artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 69, pp. 220-246. (In Russ.) https://doi.org/10.17223/19996195/69/11, https://elibrary.ru/eceboi
  5. Miao F., Cukurova M. (2024). AI Competency Framework for Teachers. Paris, UNESCO Publ., 52 p. https://doi.org/10.54675/ZJTE2084
  6. Moorhouse B., Wong K.M. (2025). Generative Artificial Intelligence and Language Teaching. Cambridge, Cambridge University Press, 94 p.
  7. Shi L. (2025). Assessing teachers’ generative artificial intelligence competencies: instrument development and validation. Education and Information Technologies, pp. 1-20. https://doi.org/10.1007/s10639-025-13684-5
  8. Chen A., Lian J., Kuang X., Jia J. (2025). Can theory-driven learning analytics dashboard enhance human-AI collaboration in writing learning? Insights from an empirical experiment. The Internet and Higher Edu-cation, pp. 1-20. https://doi.org/10.48550/arXiv.2506.19364
  9. Allen L.K., Kendeou P. (2023). ED-AI Lit: An interdisciplinary framework for AI literacy in education. Policy Insights from the Behavioral and Brain Sciences, vol. 11, no. 1, pp. 3-10. https://doi.org/10.1177/23727322231220339, https://elibrary.ru/znnefm
  10. Long D., Magerko B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, vol. 1, pp. 1-16. https://doi.org/10.1145/3313831.3376727
  11. Titova S.V. (2024). Technological solutions based on artificial intelligence in teaching foreign languages: an analytical review. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikatsiya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, vol. 27, no. 2, pp. 18-37. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-2-2, https://elibrary.ru/owsqvg
  12. Evstigneev M.N. (2024). A model of language and methodological pre-service teachers’ training based on artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tam-bov University Review: Series Humanities, vol. 29, no. 5, pp. 1222-1238. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-5-1222-1238 , https://elibrary.ru/ipnyou
  13. Moorhouse B.L., Yeo M.A., Wan Y. (2024). Developing language teachers’ professional generative AI competence: An intervention study in an initial language teacher education course. System, vol. 125, art. 103399. https://doi.org/10.1016/j.system.2024.103399, https://elibrary.ru/hoceus
  14. Pham T.N., Dang T.X. (2025). An Investigation into the Application of Artificial Intelligence for Language Teaching and Learning in Vietnam. Vietnam Journal of Education, vol. 9, no. 2, pp. 265-283. https://doi.org/10.52296/vje.2025.557
  15. Tan X., Cheng G., Ling M.H. (2025). Artificial intelligence in teaching and teacher professional develop-ment: A systematic review. Computers and Education: Artificial Intelligence, vol. 8, art. 100355. https://doi.org/10.1016/j.caeai.2024.100355
  16. Elsherbiny H., Toumajian D. (2024). From Novelty to Necessity: A Survey on Second Language Learning in the Age of AI. The FLTMAG, art. 43. https://doi.org/10.69732/pwer3384, https://elibrary.ru/agauzy
  17. Pecková S., Slobodová Z. (2024). The use of AI in foreign language teaching at universities – one year later. CASALC Review, pp. 4-24. https://doi.org/10.5817/casalc2024-1-1, https://elibrary.ru/cmence
  18. Rapti C., Panagiotidis P. (2024). Teachers’ Attitudes Towards AI Integration in Foreign Language Learning: Supporting Differentiated Instruction and Flipped Classroom. European Journal of Education, vol. 7, no. 2, pp. 88-104. https://doi.org/10.26417/171oob60e, https://elibrary.ru/pbhqza
  19. Zhu M., Wang C. (2025). A systematic review of artificial intelligence in language education: Current status and future implications. Language Learning & Technology, vol. 29, no. 1, pp. 1-29. https://doi.org/10.64152/10125/73606
  20. Zaim M., Refnaldi R., Azhar F. et al. (2025). Generative AI as a Cognitive Co-Pilot in English Language Learning in Higher Education. Education Sciences, vol. 15, art. 686. https://doi.org/10.3390/educsci15060686
  21. Chan C.K.Y., Hu W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, vol. 20, no. 1, pp. 1-18. https://doi.org/10.1186/s41239-023-00411-8, https://elibrary.ru/czabjz
  22. Almisad B., Aleidan A. (2025). Faculty perspectives on generative artificial intelligence: insights into awareness, benefits, concerns, and uses. Frontiers in Education, vol. 10, art. 1632742. https://doi.org/10.3389/feduc.2025.1632742
  23. Jadhav S. (2024). Bridging the Gap: Exploring the Revolutionary Application of GenAI in Language Teach-ing and Learning. Journal of Electrical Systems, vol. 20, pp. 2185-2193. https://doi.org/10.52783/jes.2325, https://elibrary.ru/dqzvkl
  24. Tallvid M. (2014). Understanding teachers’ reluctance to the pedagogical use of ICT in the 1:1 classroom. Education and Information Technologies, vol. 21, pp. 1-19. https://doi.org/10.1007/s10639-014-9335-7
  25. Sysoyev P.V., Filatov E.M. (2024). Method of teaching students’ foreign language creative writing based on evaluative feedback from artificial intelligence. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 1 (67), pp. 115-135. (In Russ.) https://doi.org/10.32744/pse.2024.1.6, https://elibrary.ru/tmstly
  26. Filiz O., Kaya M.H., Adiguzel T. (2025). Teachers and AI: Understanding the factors influencing AI inte-gration in K-12 education. Education and Information Technologies, vol. 30, pp. 17931-17967. https://doi.org/10.1007/s10639-025-13463-2, https://elibrary.ru/dncvng
  27. Zhang C., Schießl J., Plößl L., Hofmann F., Gladez R. (2023). Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education, vol. 20, art. 49. https://doi.org/10.1186/s41239-023-00420-7, https://elibrary.ru/wjopom
  28. Uwosomah E.E., Dooly M. (2025). It is not the huge enemy: preservice teachers’ evolving perspectives on AI. Education Sciences, vol. 15, no. 2, art. 152. https://doi.org/10.3390/educsci15020152, https://elibrary.ru/sxdzco
  29. Pokrivcakova S. (2024). Pre-service teachers’ attitudes towards artificial intelligence and its integration into EFL teaching and learning. Journal of Language and Cultural Education, vol. 11, pp. 100-114. https://doi.org/10.2478/jolace-2023-0031, https://elibrary.ru/kcgjcg
  30. Korenev A.A. (2024). Using artificial intelligence technologies for assessment and testing in language edu-cation. Inostrannye yazyki v shkole = Foreign Languages at School, no. 5, pp. 31-36. (In Russ.) https://elibrary.ru/buhnkp
  31. Fleckenstein J., Keller S., Krumpen F. et al. (2024). Do teachers spot AI? Evaluating the detectability of AI-generated texts among student essays. Computers and Education: Artificial Intelligence, vol. 6, art. 100209. https://doi.org/10.1016/j.caeai.2024.100209, https://elibrary.ru/ydcvxj
  32. Waltzer T., Pilegard C., Heyman G.D. (2024). Can you spot the bot? Identifying AI-generated writing in college essays. International Journal for Educational Integrity, vol. 20, art. 11. https://doi.org/10.1007/s40979-024-00158-3, https://elibrary.ru/rzsaap
  33. Walter Y. (2024). Embracing the future of Artificial Intelligence in the classroom: the relevance of AI lite-racy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, vol. 21, art. 15. https://doi.org/10.1186/s41239-024-00448-3, https://elibrary.ru/btlypd
  34. Weng Z., Fu Y. (2025). Generative AI in language education: Bridging divide and fostering inclusivity. In-ternational Journal of Technology in Education, vol. 8, no. 2, pp. 395-420. https://doi.org/10.46328/ijte.1056
  35. Vieriu A.M., Petrea G. (2025). The impact of artificial intelligence (AI) on students’ academic development. Education Sciences, vol. 15, no. 3, art. 343. https://doi.org/10.3390/educsci15030343, https://elibrary.ru/zlvaxk
  36. Sysoyev P.V. (2023). Artificial intelligence in education: awareness, readiness and practice of using artificial intelligence technologies in professional activities by university faculty. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 32, no. 10, pp. 9-33. (In Russ.) https://doi.org/10.31992/0869-3617-2023-32-10-9-33, https://elibrary.ru/tzytkm

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».