Organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots

Cover Page

Cite item

Full Text

Abstract

Importance. Every day, thousands of people use chatbots for educational purposes: someone uses them to search for necessary information, someone uses them to do homework and prepare for lessons, but most simply use them to communicate, including in a foreign language. Paying attention to the didactic properties of chatbots and their methodological functions, it is not surprising that they are so rapidly integrated into language education, bringing many advantages. However, the issues of ensuring the quality of feedback from chatbots, information security and prevention of AI plagiarism, which students can use in the future, still remain controversial. Despite the fact that in modern scientific and methodological literature there is a body of work devoted to the integration of artificial intelligence technologies in foreign language teaching, in which the authors mainly considered the use of chatbots and neural networks for the development of students’ writing skills, no special conditions were noted that determine the minimum significant requirements for the beginning of the educational process which affect the effectiveness of training. Therefore, the purpose of this work is to identify the organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots.
Materials and Methods. To identify the organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots, the following groups of research methods are used: a) theoretical methods are used to familiarize and analyze scientific and methodological literature on the organization of foreign language teaching based on AI technologies in order to study the accumulated experience; b) empirical methods are used to conduct a survey of students and identify their general awareness of AI technologies and their didactic potential, observe the interaction of students with chatbots, and describe the results of the study. Definition of Concepts. The key concepts are “chatbot” and “language model”. To reveal the essence of chatbots in teaching a foreign language, their didactic properties and methodological functions are analyzed, and an up-to-date classification is presented.
Results and Discussion. The organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots have been revealed: a) the level of foreign language communicative competence development of students by the beginning of training should be at least average (B1-B2) according to the Pan-European scale of foreign language proficiency CEFR; b) the presence of students and the teacher of industrial engineering skills for effective interaction with chatbots; c) conducting instruction with students on compliance with information security when interacting with chatbots; d) compliance with the rules of author ethics and prevention of plagiarism generated by chatbots; e) motivating students to use chatbots for educational purposes; f) developing a step-by-step learning algorithm and step-by-step following this algorithm.
Conclusion. The identification of organizational and pedagogical conditions for teaching students foreign language written interaction based on practice with chatbots allows us to identify pain points at the initial stage of training and prevent the development of negative scenarios when using AI technologies. Compliance with the identified organizational and pedagogical conditions makes it possible to achieve increased efficiency in the development of students’ foreign language writing skills. The obtained research results can be used to design methodological systems for teaching a foreign language using chatbots and other AI technologies.

About the authors

N. V. Chetyrina

Derzhavin Tambov State University

Author for correspondence.
Email: chetyrina@tsutmb.ru
ORCID iD: 0009-0003-1792-9318

Natalya V. Chetyrina, Lecturer of the Linguistics and Linguodidactics Department

Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian Federation

References

  1. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2024). The competence of a foreign language teacher in the field of artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 90-96. (In Russ.) https://elibrary.ru/auprsp
  2. Tivyaeva I.V., Mikhailova S.V., Kazantseva A.A. (2024). Regulating the use of generative artificial intelligence tools in graduate qualification papers. Vestnik MGPU. Seriya: Filologiya. Teoriya yazyka. Yazykovoe obrazova-nie = MCU Journal of Philology. Theory of Linguistics. Linguistic Education, vol. 2 (54), pp. 202-218. (In Russ.) https://doi.org/10.25688/2076-913X.2024.54.2.15, https://elibrary.ru/aagzxz
  3. Sysoyev P.V. (2024). Ethics and AI-plagiarism in an academic environment: students’ understanding of com-pliance with author’s ethics and the problem of plagiarism in the process of interaction with generative artificial intelligence. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 33, no. 2, pp. 31-53. (In Russ.) https://doi.org/10.31992/0869-3617-2024-33-2-31-53, https://elibrary.ru/vtaiuo
  4. Sysoyev P.V., Polyakov O.G., Evstigneev M.N., Evstigneeva I.A., Prokhorov A.V., Klochikhin V.V., Filatov E.M., Sorokin D.O. (2023). Teaching a Foreign Language on the Basis of Artificial Intelligence Technologies. Tambov, Publishing House “Derzhavinsky”, 132 p. (In Russ.) https://elibrary.ru/xldywn
  5. Sysoyev P.V., Filatov E.M. (2023). Chatbots in teaching a foreign language: advantages and controversial is-sues. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Hu-manities, vol. 28, no. 1, pp. 66-72. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-1-66-72, https://elibrary.ru/pxgztj
  6. Fitria T.N. (2021). The use technology based on artificial intelligence in English teaching and learning. ELT Echo The Journal of English Language Teaching in Foreign Language Context, vol. 6, pp. 213-223. http://dx.doi.org/10.24235/eltecho.v6i2.9299
  7. Satiti L.H., Fauziati E., Seytaningsih E. (2024). AI Chatbot as an effective English teaching partner for university students. International Journal of Educational Research & Social Sciences, vol. 5, no. 3, pp. 463-469.
  8. Titova S.V., Temuryan K.T. (2024). Intelligent agents in teaching foreign languages: typology, opportunities, challenges. Yazyk i kul’tura = Language and Culture, no. 65, pp. 262-287. (In Russ.) https://doi.org/10.17223/19996195/65/12, https://elibrary.ru/qayshh
  9. Lobeeva P.I. (2023). The didactic potential of using Chatbots in teaching and learning English phrasal verbs. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humani-ties, vol. 28, no. 6, pp. 1467-1476. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1467-1476, https://elibrary.ru/fmyeoc
  10. Kharlamenko I.V., Vonog V.V. (2023). Chat-bots in teaching vocabulary in English. Materialy 7 Mezhdunarod-noi nauchnoi konferentsii «Informatizatsiya obrazovaniya i metodika ehlektronnogo obucheniya: tsifrovye tekhnologii v obrazovanii» = Proceedings of the 7th International Scientific Conference “Informatization of Education and E-learning Methods: Digital Technologies in Education”. Krasnoyarsk, Krasnoyarsk State Pedagogical University named after V.P. Astafiev Publ., pp. 602-604. (In Russ.) https://elibrary.ru/utwjyo
  11. Cherkasova E.A. (2023). Didactic and methodical functions of Chatbots in teaching foreign language grammar to non-linguistic students. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 28, no. 6, pp. 1443-1451. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1443-1451, https://elibrary.ru/cvexfj
  12. Avramenko A.P., Akhmedova A.S., Bulanova E.R. (2023). Chatbot technology as a means of forming foreign language grammatical competence in self-study. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 28, no. 2, pp. 386-394. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-2-386-394, https://elibrary.ru/abfjqp
  13. Filatov E.M. (2024). Automated assessment of learners’ foreign language essay based on feedback from artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 78-83. (In Russ.) https://elibrary.ru/ngeqsn
  14. Sysoyev P.V., Filatov E.M. (2023). Method of the development of students’ foreign language communication skills based on practice with a Chatbot. Perspektivy nauki i obrazovaniya = Perspectives of Science and Educa-tion, no. 3 (63), pp. 201-218. (In Russ.) https://doi.org/10.32744/pse.2023.3.13, https://elibrary.ru/fjyhew
  15. Evstigneev M.N. (2024). Planning a foreign language lesson using generative artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humani-ties, vol. 29, no. 3, pp. 617-634. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-617-634, https://elibrary.ru/ahylwe
  16. Evstigneev M.N. (2024). Thematic control and criteria-based assessment of foreign language writing skills using artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 4, pp. 913-926. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-4-913-926, https://elibrary.ru/jaajxe
  17. Klochikhin V.V., Polyakov O.G. (2023). Artificial intelligence technologies: corpus analysis tools in foreign language teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 24-30. (In Russ.) https://elibrary.ru/bdttfe
  18. Avramenko A.P. (2023). Large Language Models in Linguistics and Linguodidactics. Moscow, Book House “University”, Dobrosvet Publ., 129 p. (In Russ.) https://doi.org/10.31453/kdu.ru.978-5-7913-1343-0-2023-129, https://elibrary.ru/qdpqoo
  19. Sysoyev P.V. (2023). Artificial intelligence technologies in teaching a foreign language. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 6-16. (In Russ.) https://elibrary.ru/qfmzhw
  20. Sysoyev P.V. (2024). Principles of teaching a foreign language based on artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 6-17. (In Russ.) https://elibrary.ru/horgdd
  21. Evstigneev M.N. (2024). Principles of teaching a foreign language based on artificial intelligence. Vestnik Tam-bovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 2, pp. 309-323. (In Russ.) https://elibrary.ru/horgdd
  22. Avramenko A.P. (2022). Linguodidactic potential of virtual assistants and chat-bots as speech recognition tools based on artificial intelligence. Mir nauki, ku’tury, obrazovaniya = The World of Science, Culture and Education, no. 3 (94), pp. 9-11. (In Russ.) https://doi.org/10.24412/1991-5497-2022-394-9-12, https://elibrary.ru/ubwhsf
  23. Totskaya I.V., Nedospasova L.A. (2023). The educational potential of chatbots in foreign languages learning: sociolinguistic, didactic and communicative aspects. Nauchno-metodicheskii ehlektronnyi zhurnal «Kontsept» = Scientific-Methodological Electronic Journal “Koncept”, no. 6, pp. 14-27. (In Russ.) https://doi.org/10.24412/2304-120X-2023-11045, https://elibrary.ru/vqotsu
  24. Titova S.V. (2024). Technological solutions based on artificial intelligence in teaching foreign languages: an ana-lytical review. Vestnik Moskovskogo universiteta. Seriya 19. Lingvistika i mezhkul’turnaya kommunikatsiya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, no. 2, pp. 18-37. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-2-2, https://elibrary.ru/owsqvg
  25. Evstigneev M.N. (2023). Twee neural network as a new tool for English language teacher. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 28, no. 6, pp. 1428-1442. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1428-1442, https://elibrary.ru/hwajhp
  26. Söilen K.S. (2024). A review of the knowledge worker as prompt engineer: how good is AI at societal analysis and future predictions? Forsajt, vol. 18, no. 2, pp. 6-20.
  27. Bogolepova S.V., Zharkova M.G. (2024). Researching the potential of generative language models for essay evaluation and feedback provision. Otechestvennaya i zarubezhnaya pedagogika = Domestic and Foreign Pedagogy, vol. 1, no. 5 (101), pp. 123-137. (In Russ.) https://doi.org/10.24412/2224-0772-2024-101-123-137, https://elibrary.ru/mhusof
  28. Filatov E.M. (2024). Development of students’ foreign language communicative skills based on the character.ai web application. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 29, no. 5, pp. 1248-1260. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-5-1248-1260
  29. Sysoyev P.V. (2011). Informatization of foreign language education: main directions and perspectives. Inostrannye yazyki v shkole = Foreign Languages at School, no. 10, pp. 20-24. (In Russ.) https://elibrary.ru/oprcer
  30. Evstigneeva I.A., Evstigneev M.N., Klochikhin V.V. (2022). Ensuring students’ information security in the process of using the project method in foreign language teaching at the university. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 27, no. 4, pp. 1009-1019. (In Russ.) https://doi.org/10.20310/1810-0201-2022-27-4-1009-1019, https://elibrary.ru/oownfp
  31. Khmarenko N.I. (2022). Stages of teaching students foreign language written speech based on cooperative learning and ICT. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humanities, vol. 27, no. 3, pp. 677-687. (In Russ.) https://doi.org/10.20310/1810-0201-2022-27-3-677-687, https://elibrary.ru/ypgwki
  32. Yuzbasheva E.G. (2022). The functions of the teacher in the formation of speech grammatical skills of students based on the implementation of foreign-language internet projects. Nauka i shkola, no. 4, pp. 231-238. (In Russ.) https://doi.org/10.31862/1819-463X-2022-4-231-238, https://elibrary.ru/mxsdyc
  33. Klochikhin V.V. (2020). Stages of students’ collocation competence development based on linguistic corpus. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Series: Humani-ties, vol. 25, no. 186, pp. 14-24. (In Russ.) https://doi.org/10.20310/1810-0201-2020-25-186-14-24, https://elibrary.ru/mqddog
  34. Huallpa J.J., Arocutipa J.P.F., Panduro W.D. et al. (2023). Exploring the ethical considerations of using Chat GPT in university education. Periodicals of Engineering and Natural Sciences (PEN), vol. 11, no. 4, pp. 105-115.
  35. Farhi F., Jeljeli R., Aburezeq I., Fawzi F. (2023). Analyzing the students’ views, concerns, and perceived ethics about chat GPT usage. Computers and Education: Artificial Intelligence, pp. 100-180. http://dx.doi.org/10.1016/j.caeai.2023.100180
  36. Zimnyaya I.A. (2010). Learning activity is a specific type of activity. Ehksperiment i Innovatsii v Shkole, no. 1, pp. 40-51. (In Russ.) https://elibrary.ru/mvicid
  37. Osipova L.B. (2024). Artificial intelligence technology in the higher education system. Innovatsionnoe razvitie professional’nogo obrazovaniya = Innovative Development of Vocational Education, no. 2 (42), pp. 41-47. (In Russ.) https://elibrary.ru/slfuql
  38. November A. (1998). Teaching Zach to think. High School Principal.
  39. Sysoyev P.V., Filatov E.M., Sorokin D.O. (2024). Feedback in foreign language teaching: from information technologies to artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 65, pp. 242-261. (In Russ.) https://doi.org/10.17223/19996195/65/11, https://elibrary.ru/plzyov

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».