Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 61, No 3 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

ЛЮДИ НАУКИ

ALEKSANDR BORISOVICh KURZhANSKIY

- -.
Differencial'nye uravneniya. 2025;61(3):291–292
pages 291–292 views

ORDINARY DIFFERENTIAL EQUATIONS

ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF THE STURM–LIOUVILLE OPERATOR WITH SINGULAR POTENTIAL ON A STAR GRAPH. II

Zuev K.P.

Abstract

Spectral problems on a star-graph consisting of three edges with a Sturm–Liouville operator defined on each of them are investigated. The spectral properties of such operators have been studied, in particular, asymptotic formulas for eigenvalues and eigenfunctions of the operator with Dirichlet boundary conditions at free ends and continuity and Kirchhoff conditions at a common vertex have been obtained. The potential in the Sturm–Liouville problem is assumed to be singular, it is a derivative of a quadratically summable function in sense of distributions.
Differencial'nye uravneniya. 2025;61(3):293–304
pages 293–304 views

ON PROPERTIES OF DIRAC OPERATOR WITH IRREGULAR BOUNDARY CONDITIONS

Makin A.S.

Abstract

The paper is concerned with the basis properties of root functions of the 2 × 2 Dirac operator with summable complex-valued potential and irregular boundary conditions. When certain conditions on the spectrum of the operator under consideration are satisfied, we prove that the system of root functions of this operator is incomplete in the space L2(0,π)⊕L2(0,π) but forms unconditional basis in the closure of its linear hull.
Differencial'nye uravneniya. 2025;61(3):305–315
pages 305–315 views

ON THE CHANGE IN THE POWER OF THE SPECTRUM OF THE EXACT AND ABSOLUTE WANDERING EXPONENT DURING THE TRANSITION FROM A TWO-DIMENSIONAL NONLINEAR SYSTEM TO A SYSTEM OF ITS FIRST APPROXIMATION

Stash A.K., Loboda N.A.

Abstract

The sets of values (spectra) of the wandering exponents of solutions of differential systems are studied. Two-dimensional systems with nonlinearity of an arbitrarily specified higher order of smallness in the neighborhood of the origin are constructed, for which all solutions are infinitely extendable to the right and any of the spectra of their wandering exponents can coincide with both the segment [0, 1] and with any pre-specified non-empty subset of rational numbers of this segment, while the spectra of linear systems of their first approximation consist of only one element. Moreover, the spectra of the exponents of the original system coincide with the corresponding spectra of the wandering exponents of the narrowing of the constructed nonlinear two-dimensional systems to the direct product of any open neighborhood of the zero of the phase plane and the time semi-axis.
Differencial'nye uravneniya. 2025;61(3):316–329
pages 316–329 views

INTEGRABLE DYNAMICAL SYSTEMS OF 9th ORDER WITH DISSIPATION

Shamolin M.V.

Abstract

New cases of integrable dynamical systems of the ninth order, homogeneous in terms of variables, are presented in which a system on a cotangent bundle to a four-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external one, which has a dissipation of different signs. The external field is introduced using some unimodular transformation and generalizes the previously considered fields. Complete sets of both the first integrals and invariant differential forms are given.
Differencial'nye uravneniya. 2025;61(3):330–353
pages 330–353 views

PARTIAL DERIVATIVE EQUATIONS

APPLICATION OF DIFFERENTIAL-GEOMETRIC METHODS OF CONTROL THEORY TO THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS. IV

Elkin V.I.

Abstract

We consider the symmetries of partial differential equations based on the use of differential-geometric and algebraic methods of the theory of dynamical control systems.
Differencial'nye uravneniya. 2025;61(3):354–365
pages 354–365 views

CLASSIFICATION OF FIELD EQUATIONS FOR WEYL SPINORS AND ELKO SPINORS

Marchuk N.G.

Abstract

A class of field (relativistically invariant) equations is introduced for a wave function consisting of several Weyl spinors. The equations are such that each of these Weyl spinors satisfies the Klein–Gordon equation with the same mass. Subclasses of equations of Majorana type and Dirac-type are introduced. It is shown that the known equations for Elko spinors belong to the subclass of Dirac-type equations.
Differencial'nye uravneniya. 2025;61(3):366–373
pages 366–373 views

CONTROL THEORY

ON SINGULARITIES OF A-ORBITAL FEEDBACK LINEARIZATION OF SINGLE-INPUT AFFINE CONTROL SYSTEMS

Fetisov D.A.

Abstract

For single-input affine control systems, we address the problem of A-orbital feedback linearization around singular points of the derived flag of the distribution associated with the control system. By a singular point of a derived flag we mean a point such that at least one of the elements of the derived flag in any neighborhood of this point is not a distribution of constant rank. We prove a local necessary and sufficient condition for A-orbital feedback equivalence of a single-input affine control system to a linear controllable system considered in a neighbourhood of the zero equilibrium point.
Differencial'nye uravneniya. 2025;61(3):374–393
pages 374–393 views

FINITE STABILIZATION OF NOT FULLY CONTROLLED HYBRID LINEAR CONTINUOUS-DISCRETE SYSTEMS

Khartovskii V.E.

Abstract

For hybrid linear autonomous continuous-discrete systems that do not have the property of complete controllability, an approach to designing two types of controllers that provide “incomplete finite stabilization” is proposed. The implementation of one of them — a controller of weak finite state stabilization — is based on knowledge of the values of the control system solution at discrete moments of time, multiples of the quantization step. The second type of controller — a weak finite stabilization controller by output — uses the observed output signal as feedback. The constructed regulators contain auxiliary variables described by additional equations with discrete time, and incomplete finite stabilization implies that for a closed system, finite functions will only be required for those components of the solution vector that are components of the solution vector of the initial (open) system. Criteria for the existence of the specified regulators and a method for their design are obtained.
Differencial'nye uravneniya. 2025;61(3):394–409
pages 394–409 views

ON EXACT GLOBAL CONTROLLABILITY OF A SEMILINEAR EVOLUTIONARY EQUATION WITH NONSTATIONARY OPERATOR

Chernov A.V.

Abstract

For a Cauchy problem associated with a controlled semilinear evolutionary equation with bounded nonstationary (id est depending on time) operator in a Hilbert space we obtain sufficient conditions for exact controllability to a given final state (and also to given intermediate states at intermediate time moments) on an arbitrarily fixed (without additional conditions) time interval. In fact, it is generalized an analogous result having been obtained by the author formerly for the case of a stationary operator. Like formerly, here we use the Minty–Browder’s theorem and also a chain technology of successive continuation of the solution to a controlled system to intermediate states. As example (of a specific interest) we consider a semilinear equation of the global electric circuit in the Earth atmosphere.
Differencial'nye uravneniya. 2025;61(3):410–428
pages 410–428 views

BRIEF MESSAGES

ON ONE APPROACH TO CONSTRUCTING A SOLUTION TO A TWO-POINT BOUNDARY VALUE PROBLEM FOR A NONLINEAR MATRIX LYAPUNOV EQUATION

Makovetskii I.I.

Abstract

A two-point boundary value problem for a nonlinear generalization of the matrix Lyapunov equation is considered. An algorithm with an implicit computational scheme for constructing its solution is proposed.
Differencial'nye uravneniya. 2025;61(3):429–432
pages 429–432 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».