Foreign experience of artificial intelligence technologies for firefighting in especially difficult conditions in fire departments in the USA, Canada and Japan

Cover Page

Cite item

Abstract

the research relevance is due to the increasing frequency and intensity of natural and man-made disasters accompanied by large fires in forests, high-rise buildings and industrial facilities with increased danger. The study of foreign experience in the use of intelligent technologies in the field of fire extinguishing can be useful for improving the work of Russian firefighters. The research goal is to systematize the existing foreign experience in the use of AI technologies in the activities of fire departments of the USA, Canada and Japan for firefighting in especially difficult conditions, to identify the most promising areas and opportunities for their adaptation in domestic practice. The following tasks were solved: an analysis of scientific literature on the use of artificial intelligence technologies in the USA, Canada and Japan for firefighting; specific examples of real operations of fire departments using intelligent technologies in the USA, Canada and Japan were studied; the main advantages and disadvantages of the use of intelligent technologies in the fire protection of the USA, Canada and Japan are revealed. In the course of the study methods were used: historiographical analysis of scientific literature on the topic under study; comparative analysis of foreign experience; as well as methods of scientific generalization and systematization. Based on the results, the following conclusions were formulated: The American experience of using unmanned aerial vehicles with computer vision algorithms proves high situational awareness due to the rapid assessment of fire and the identification of thermal anomalies. In Canada, the effectiveness of artificial intelligence in modeling fires and predicting the spread of fire has been confirmed. The Japanese experience is mainly based on the application of autonomous firefighting robots to work in hazardous environments.

About the authors

M. E Shkitronov

Saint Petersburg University of the State Fire Service of EMERCOM of Russia

Email: shkitronov@mail.ru

References

  1. Актаева А.У., Жаксылык Т.Д., Сарсенбаева Ж.Б. Искусственный интеллект и пожарная безопасность // НИР/S&R. 2023. № 1 (13). С. 133 – 136.
  2. Государственная противопожарная служба Российской Федерации // МЧС России. URL: https://вдпо.рф/enc/gosudarstvennaya-protivopozharnaya-sluzhba (дата обращения: 01.05.2024).
  3. Николаев В.А., Бажанова Е.С. Возможные способы пожаротушения электромобилей в современном мире // Вестник науки. 2025. № 2 (83). С. 763 – 770.
  4. Павлов Е.В. Разработка методики обоснования тактико-технических требований к робототехническому комплексу многорежимного пожаротушения // Технологии гражданской безопасности. 2020. № 2 (64). С. 7 – 14.
  5. Цариченко С.Г., Овсяник А.Г., Павлов Е.В., Симанов С.Е., Исавнина И.В. Групповое управление робототехническими комплексами при тушении пожаров в особо опасных условиях // Пожары и ЧС. 2018. № 4. С. 19 – 22.
  6. Цыкунов Е.А. Инновационные технологии для предотвращения и ликвидации пожаров на предприятиях // Вестник науки. 2025. № 2 (83). С. 751 – 757.
  7. Fire and Disaster Management Agency (FDMA). URL: https://www.fdma.go.jp/en/ (date of access: 15.05.2025).
  8. Firescope Home. URL: https://firescope.caloes.ca.gov/ (date of access: 15.05.2025).
  9. Jieyu Chen, Nan Li, Yangming Shi, Jing Du. Cross-cultural assessment of the effect of spatial information on firefighters’ wayfinding performance: A virtual reality-based study // International Journal of Disaster Risk Reduction. 2022. No. 84. P. 74 – 86.
  10. Khair A. Development of Physical Training Program to Boost Functional Strength in Firefighter Recruits Using a Modified Nominal Group Technique // Humanitarian studies. 2019. No. 8. P. 26 – 35.
  11. Matsuyama K. Application of UAVs for Fire Detection and Monitoring in Urban Areas // Journal of Disaster Research. 2019. No. 14 (5). P. 851 – 858.
  12. Nakamura S. Development of Autonomous Firefighting Robots with AI Control // Proceedings of the International Conference on Robotics and Automation. 2021. P. 4256 – 4263.
  13. NFPA. The National Fire Protection Association. URL: https://www.nfpa.org/en (date of access: 15.05.2025).
  14. Tanaka H., Sato T. AI-Based Route Optimization for Firefighting Operations // International Journal of Fire Science and Technology. 2020. No. 39 (2). P. 123 – 130.
  15. Wijkmark C. Immersive Virtual Reality for firefighter skills training // Western Norway University. 2023. No. 4. P. 94 – 106.
  16. Yang Li, Qinglin Han, Gaozhi Cui, Ke Bai, Simeng Chen. Assessment of firefighter-training effectiveness in China based on human-factor parameters and machine learning // Technology and health care: official journal of the European Society for Engineering and Medicine. 2024. No. 31 (4). P. 10 – 28.
  17. Yang Li, Qinglin Han, Gaozhi Cui, Ke Bai. Evaluation of Firefighter Training Effectiveness Based on Human Physiological Signals and Improved Transfer Learning // Humanitarian studies. 2019. No. 3. P. 106 – 115.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).