The use of neural networks and ballistic models to enhance the effectiveness of ball-throwing training
- Authors: Kataeva L.Y.1
-
Affiliations:
- Nizhny Novgorod Transport Institute – branch of Volga Region State Transport University
- Issue: Vol 6, No 7 (2025)
- Pages: 105-112
- Section: ARTICLES
- URL: https://ogarev-online.ru/2712-9950/article/view/374996
- ID: 374996
Cite item
Abstract
the article analyzes the possibilities of applying neural networks and modern technical solutions to optimize and accelerate ball throwing training. This skill helps to develop student's strength, endurance, accuracy, coordination and reaction speed. A simple system for optimizing the process of training students in small ball throwing skill is proposed, which consists of three blocks. The fixation block allows representing the position of the student's body parts in the form of a graph based on the analysis of photo or video of the throwing moment with the use of neural network YOLOv8-Pose. The second block of the system performs theoretical analysis and verification of the throwing distance. This block is based on a simple ballistic physical and mathematical model, and verification is based on real throws of the ball by the student. The third block generates personalized instructions for adjusting the body position to increase the throwing distance using the k-closest method. The pedagogical experiment on the use of the simple system in the classroom showed: in the experimental group there was a significant increase in the speed of ball flight and acceleration dynamics for the final effort compared to the control group. The validity of the results was confirmed by statistical processing using Student's t-criterion. The use of even a simple version of this system in the classroom allows the student and the teacher to conduct an objective analysis of technical errors in throwing a small ball visually, and the lesson itself becomes exciting for the student and allows to work out in more detail the errors made by the student when throwing. It is shown that the integration of digital tools even in a simple version in the educational process makes the learning process more interactive and focused on personal development.
About the authors
L. Yu Kataeva
Nizhny Novgorod Transport Institute – branch of Volga Region State Transport University
Email: kataeval2010@mail.ru
References
- Da Silva R.H., Nobre G.C., Pessoa M.L.F., Soares ?.A.A., Bezerra J., Gaya A.R., Martins C.M.L. Physical activity during school-time and fundamental movement skills: a study among preschoolers with and without physical education classes // Physical Education and Sport Pedagogy. 2022. Vol. 29. Iss. 3. P. 302 – 314.
- Андрианова Н.В., Швец Г.В. Подвижные игры как средство овладения базовой техникой волейболистов групп начальной подготовки первого года обучения // Теория и практика физической культуры. 2024. № 1. С. 84.
- Cereda F. Movement as the core of physical engagement and understanding, tab edizioni. Roma, 2024. 241 p. URL: https://hdl.handle.net/10807/265814 (дата обращения: 29.11.2024).
- Redondo-Fl?rez L, Ramos-Campo D.J., Clemente-Su?rez V.J. Body Composition, Psychological, Cardiovascular, and Physical Activity Factors Related with Academic School Performance // Sustainability. 2021. Vol. 13. Iss. 16. P. 8775.
- Шыхов Ы., Гурбанов М. Роль технологий в современном спортивном образовании: перспективы и вызовы // Международный научный журнал «Всемирный ученый». 2024. Вып. 25. Т. 1. С. 644 – 650.
- Петров П.К. Информационные технологии в физической культуре и спорте: учебное пособие. Саратов: Вузовское образование, 2020. 377 с.
- Кабанов А.А. Комплексный подход по предупреждению спортивных травм // Здоровье – основа человеческого потенциала: проблемы и пути их решения. 2014. Т. 9. № 1. С. 419 – 421.
- Bochkov V.S., Kataeva L.Y. WUUNet: Advanced fully convolutional neural network for multiclass fire segmentation // Symmetry. 2021. Vol. 13. Iss. 1. P. 1 – 18.
- Бочков В.С., Катаева Л.Ю., Масленников Д.А. Точная многоклассовая сегментация пожаров: подходы, нейронные сети, схемы сегментации // Искусственный интеллект и принятие решений. 2024. № 3. С. 71 – 86.
- Aresta S., Bortone I., Bottiglione F., Di Noia T., Di Sciascio E., Lof? D., Musci M., Narducci F., Pazienza A., Sardone R., Sorino P. Combining Biomechanical Features and Machine Learning Approaches to Identify Fencers’ Levels for Training Support. Applied Sciences. 2022. Vol. 12. Iss. 23. 12350 p.
- Тарнаева С.А., Катаева Л.Ю., Романова Н.А. Применение методов математической статистики при решении инженерных задач: учеб. пособие. Нижний Новгород: Нижегород. гос. техн. ун-т им. Р.Е. Алексеева, 2014. 84 с.
- Fitzpatrick A., Stone J.A., Choppin S., Kelley J. Analysing Hawk-Eye ball-tracking data to explore successful serving and returning strategies at Wimbledon // International Journal of Performance Analysis in Sport. 2023. Vol. 24. Iss. 3. P. 251 – 268.
- Титаренко Д.Ю., Рыжкова М.Н. Возможности использования нейросетей для распознавания ошибок при выполнении физических упражнений // Радиотехнические и телекоммуникационные системы. 2024. Т. 3. С. 62 – 72.
- Haixia Z., Wenhu L., Li G., Sulin W. Designing a prediction model for athlete’s sports performance using neural network // August 2023Soft Computing. 2023. Vol. 27. Iss. 19. P. 1 – 17.
- Luu B.C., Wright A.L., Haeberle H.S., Karnuta J.M., Schickendantz M.S., Makhni E.C., Nwachukwu B.U., Williams III R.J., Ramkumar P.N. Machine learning outperforms logisticregression analysis to predict next season NHL player injury: An analysis of 2322 players from 2007 to 2017 // The Orthopaedic Journal of Sports Medicine. 2020. Vol. 8. Iss. 9. P. 1 – 10.
- Shi D., Wuxiang Z., Wei Z., Xilun D. A Review on Lower Limb Rehabilitation Exoskeleton Robots // Chinese Journal of Mechanical Engineering. 2019. Vol. 32. Iss. 1. P.1 – 11.
Supplementary files

