Can generative artificial intelligence act as a mediator in linguistic education?

封面

如何引用文章

全文:

详细

Importance. The rapid development and integration of AI technologies into the higher education system marks the beginning of one of the largest digital transformations. In the Russian Federation, this process is regulated by a number of state documents that lay the foundations for the digitalization of all spheres of life, including education. In this regard, the pedagogical community is actively exploring the didactic potential of AI, considering it as a tool for personalizing education, automating routine tasks, data analytics, and developing an AI-based educational environment. According to the CEFR, mediation is one of the key professional competencies of a modern foreign language teacher. However, in the context of the active integration of AI into education,

a logical question arises: can generative AI take on the role of mediator? The purpose of the study is to develop a nomenclature of skills in foreign language mediation activities and compare the quality of mediation of a foreign language teacher and generative AI.

Research Methods. Theoretical methods: study and analysis of scientific and educational literature on the integration of AI technologies into the higher education system, the integration of AI technologies into foreign language teaching methods, and the development of mediation skills among pre-service foreign language teachers. Empirical methods: questionnaires to obtain initial data, monitoring the activities of foreign language and AI teachers in the mediation process, conducting a comparative analysis between mediation results.

Definition of Concepts. The key concept in the study is AI mediation.

Results and Discussion. А nomenclature of mediation skills in accordance with three types of mediation is developed. Mediating a text: 1) the skill to carry out oral and written translation; 2) the skill to compress/expand text/speech utterance; 3) the skill to transform text (paraphrase); 4) the skill to adapt text to the target audience; 5) the skill to transcode information (create and interpret infographics); 6) the skill to create bilingual glossaries. Mediating concepts: 7) the skill to formulate a goal and build the logic of a statement; 8) the skill to synthesize information from various sources; 9) the skill to establish causal relationships between new information and existing information; 10) the skill to direct communication participants to find a common solution. Mediating communication: 11) the skill to create a positive atmosphere of communication; 12) the skill to focus attention on the subject of discussion; 13) the skill to manage the group dynamics of communication; 14) the skill to monitor compliance with the ethics of verbal communication; 15) the skill to prevent socio-cultural conflicts; 16) the skill to encourage respect for a communication partner; the skill to choose a mediation strategy in accordance with the format of communication; the skill to resolve professional and interpersonal conflicts; 19) the skill to take responsibility for the outcome of mediation.

Conclusion. The conducted research reveals a clear distribution of strengths between a foreign language teacher and an AI. Generative AI demonstrates indisputable leadership in mediating a text. In mediating concepts, AI acts as the “architect of the text”, in some aspects not inferior, and even superior to the teacher. However, in mediating communication, the teacher has an insurmountable advantage based on human qualities.

作者简介

M. Evstigneev

Derzhavin Tambov State University

编辑信件的主要联系方式.
Email: maximevstigneev@bk.ru
ORCID iD: 0000-0003-2664-9134
SPIN 代码: 2784-8347
Scopus 作者 ID: 57206855992
Researcher ID: AAE-8965-2022

Cand. Sci. (Education), Associate Professor of Linguistics and Linguodidactics Department

俄罗斯联邦, 33 Internatsionalnaya St., Tambov, 392000, Russian Federation

参考

  1. Sysoyev P.V. (2025). Personalized foreign language learning based on artificial intelligence technologies. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 4-12. (In Russ.) https://welibrary.ru/ftazdg
  2. Titova S.V. (2024). Intelligent learning systems for personalizing and adapting language courses. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikatsiya = Moscow State Uni-versity Bulletin. Series 19. Linguistics and Intercultural Communication, no. 4, pp. 84-99. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-4-6, https://elibrary.ru/epdvjb
  3. Evstigneev M.N. (2025). Learner’s autonomy in the context of the artificial intelligence technologies devel-opment and spread in language education. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 13-21. (In Russ.) https://elibrary.ru/artmrn
  4. Sysoyev P.V., Filatov E.M., Khmarenko N.I., Murunov S.S. (2024). Teacher vs artificial intelligence: a comparison of the quality of feedback provided by a teacher and generative artificial intelligence in assess-ing students’ creative writing. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 5 (71), pp. 694-712. (In Russ.) https://doi.org/10.32744/pse.2024.5.41, https://elibrary.ru/xzgvgm
  5. Evstigneev M.N. (2024). Planning a foreign language lesson using generative artificial intelligence technol-ogies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 3, pp. 617-634. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-617-634, https://elibrary.ru/ahylwe
  6. Blinov V.I., Sergeev I.S., Esenina E.Yu., Garkusha N.S., Rodichev N.F. (2024). “Data-based management”: prospects for implementation into the system of vocational education. Obrazovanie i nauka = Education and Science Journal, vol. 26, no. 8, pp. 40-64. (In Russ.) https://doi.org/10.17853/1994-5639-2024-8-40-64, https://elibrary.ru/gxownj
  7. Khudik V.A. (2025). The role of artificial intelligence in optimizing the educational process at a medical university. Vestnik Sankt-Peterburgskogo nauchno-issledovatel’skogo instituta pedagogiki i psikhologii vysshego obrazovaniya = Bulletin of the St. Petersburg Research Institute of Pedagogy and Psychology of Higher Education, no. 1 (13), pp. 5-18. (In Russ.) https://elibrary.ru/mratij
  8. Liu C., Wang G.C., Wang H.F. (2025). The Application of artificial intelligence in engineering education: a systematic review. IEEE Access, vol. 13, pp. 17895-17910. https://doi.org/10.1109/ACCESS.2025.3532595, https://elibrary.ru/bxasrw
  9. Prokhorov A.V. (2024). Potential of artificial intelligence technologies in language training of future media specialists. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 3, pp. 589-595. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-589-595, https://elibrary.ru/yuvnvd
  10. Digtyar O.Yu. (2024). Application of digital learning by the example of using modern vr technologies in the framework of teaching students a foreign language: prospects and trends of development. Mir nauki, kul'tury, obrazovaniya = World of Science, Culture and Education, no. 3 (106), pp. 74-76. (In Russ.) https://doi.org/10.24412/1991-5497-2024-3106-74-76, https://elibrary.ru/sztkde
  11. Robert I.V. (2023).The artificial intelligence in education: the object of the study in the course of computer science; the means of the improvement of the education’s efficiency. Izvestiya Volgogradskogo gosu-darstvennogo pedagogicheskogo universiteta, no. 6 (179), pp. 4-10. (In Russ.) https://elibrary.ru/hgigry
  12. Robert I.V. (2025). Advancing the informatization of education during the digital transformation era. Pedagogicheskoe obrazovanie i nauka, no. 2, pp. 7-11. (In Russ.) https://doi.org/10.56163/2072-2524-2025-2-7-11, https://elibrary.ru/hywznf
  13. Sysoyev P.V., Evstigneev M.N. (2025). The use of technical solutions based on artificial intelligence in teaching internship in pre-service teacher training programs. Perspektivy nauki i obrazovaniya = Perspec-tives of Science and Education, no. 4 (76), pp. 135-150. (In Russ.) https://doi.org/10.32744/pse.2025.4.9, https://elibrary.ru/mubjfy
  14. Sysoyev P.V., Evstigneev M.N., Sorokin D.O. (2025). Structural model of pre-service teacher training based on artificial intelligence technologies. Perspektivy nauki i obrazovaniya = Perspectives of Science and Edu-cation, no. 3 (75), pp. 139-155. (In Russ.) https://doi.org/10.32744/pse.2025.3.9, https://elibrary.ru/flenno
  15. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2023). The competence of a foreign language teacher in the context of the artificial intelligence technologies integration into teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 88-96. (In Russ.) https://elibrary.ru/oqzdse
  16. Evstigneev M.N., Sysoyev P.V., Evstigneeva I.A. (2024). The competence of a foreign language teacher in the field of artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 90-96. (In Russ.) https://elibrary.ru/auprsp
  17. Titova S.V., Kharlamenko I.V. (2025). Training of staff for the use of artificial intelligence in foreign lan-guage teaching. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikat-siya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, no. 1, pp. 66-84. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-28-1-5, https://elibrary.ru/froxrr
  18. Titova S.V., Kharlamenko I.V. (2025). The framework of professional competence for foreign language teachers utilizing artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 69, pp. 220-246. (In Russ.) https://doi.org/10.17223/19996195/69/11, https://elibrary.ru/eceboi
  19. Sysoyev P.V. (2025). A modern teacher’s competence in the field of artificial intelligence: structure and content. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 34, no. 6, pp. 58-79. (In Russ.) https://doi.org/10.31992/0869-3617-2025-34-6-58-79, https://elibrary.ru/zjmqfd
  20. Alam A. (2021). Should robots replace teachers? Mobilisation of AI and learning analytics in education. 2021 International Conference on Advances in Computing, Communication, and Control, pp. 1-12. https://doi.org/10.1109/ICAC353642.2021.9697300, https://elibrary.ru/ydabre
  21. Fitria T.N. (2023). The use of artificial intelligence in education (AIED): Can AI replace the teacher’s role? Epigram, vol. 20, no. 2, pp. 165-187. https://doi.org/10.32722/epi.v20i2.5711, https://elibrary.ru/dxdqgj
  22. Koh J., Cowling M., Jha M., Sim K.N. (2023). The human teacher, the AI teacher and the AIED-Teacher relationship. Journal of Higher Education Theory & Practice, vol. 23, no. 17. https://doi.org/10.33423/jhetp.v23i17.6543, https://elibrary.ru/okgfhu
  23. Sysoyev P.V. (2024). Principles of teaching a foreign language based on artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 6-17. (In Russ.) https://elibrary.ru/horgdd
  24. Bogolepova S.V., Zharkova M.G. (2024). Researching the potential of generative language models for essay evaluation and feedback provision. Otechestvennaya i zarubezhnaya pedagogika, vol. 1, no. 5, pp. 123-137. (In Russ.) https://doi.org/10.24412/2224-0772-2024-101-123-137, https://elibrary.ru/mhusof
  25. Evstigneev M.N. (2024). Thematic control and criteria-based assessment of foreign language writing skills using artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 4, pp. 913-926. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-4-913-926, https://elibrary.ru/jaajxe
  26. Avramenko A.P. (2025). Comparative analysis of GPT-agents in the context of the development of personalized learning materials and assignments. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 22-26. (In Russ.) https://elibrary.ru/msbcin
  27. Safonova V.V. (2024). Mediation training as a part and parcel of Russian academic elite’s linguocultural education. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul'turnaya kommunikatsiya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, vol. 27, no. 4, pp. 50-67. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-4-4, https://elibrary.ru/wkecnj
  28. Chikrizova K.V. (2024). Linguodidactic and interdisciplinary analysis of the concept of mediation as a ter-minological problem. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 4, pp. 891-902. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-4-891-902, https://elibrary.ru/dkgzuy
  29. Ustinova T.V. (2022). Teaching second language from the plurilingual perspective. Obshchestvo: sotsiolo-giya, psikhologiya, pedagogika = Society: Sociology, Psychology, Pedagogics, no. 10 (102), pp. 159-162. (In Russ.) https://doi.org/10.24158/spp.2022.10.24, https://elibrary.ru/tbxukx
  30. Koryakovtseva N.F. (2022). Text mediation in the context of professional communication and specialist’s information processing activity. Vestnik Moskovskogo gosudarstvennogo lingvisticheskogo universiteta. Obrazovanie i pedagogicheskie nauki, no. 1 (842), pp. 43-48. (In Russ.) https://doi.org/10.52070/2500-3488_2022_1_842_43, https://elibrary.ru/agpysr
  31. Liu H., Fan J. (2025). AI-mediated communication in EFL classrooms: the role of technical and pedagogical stimuli and the mediating effects of AI literacy and enjoyment. European Journal of Education, vol. 60, no. 1. https://doi.org/10.1111/ejed.12813, https://elibrary.ru/smgkcn
  32. Fathi J., Rahimi M. (2024). Utilising artificial intelligence-enhanced writing mediation to develop academic writing skills in EFL learners: a qualitative study. Computer Assisted Language Learning, pp. 1-40. https://doi.org/10.1080/09588221.2024.2374772
  33. Rahimi A.R., Sevilla-Pavón A. (2025). The role of design thinking skills in artificial-intelligence language learning (DEAILL) in shaping language learners’ L2 grit: the mediator and moderator role of artificial intel-ligence L2 motivational self-system. Computer Assisted Language Learning, pp. 1-49. https://doi.org/10.1080/09588221.2025.2477710
  34. Fan J., Zhang Q. (2024). From literacy to learning: The sequential mediation of attitudes and enjoyment in AI-assisted EFL education. Heliyon, vol. 10, no. 17, e37158. https://doi.org/10.1016/j.heliyon.2024.e37158, https://elibrary.ru/xkfxuk
  35. Pavlov A.V. (2021). Mediation skills structure of bachelor students belonging to linguodidactics field. Mir nauki. Pedagogika i psikhologiya, vol. 9, no. 2, art. 43. (In Russ.) https://elibrary.ru/nyrils
  36. Evstigneev M.N., Evstigneeva I.A. (2025). Developing prompt engineering skills in the pre-service training of foreign language educator. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 30, no. 4, pp. 795-813. (In Russ.) https://doi.org/10.20310/1810-0201-2025-30-4-795-813, https://elibrary.ru/pzhyev
  37. Cao S., Zhong L. Exploring the effectiveness of ChatGPT-based feedback compared with teacher feedback and self-feedback: Evidence from Chinese to English translation. https://doi.org/10.48550/arXiv.2309.01645
  38. Alnemrat A., Aldamen H.A.K., Almashour M., Al-Deaibes M., AlSharefeen R. (2025). AI vs. teacher feed-back on EFL argumentative writing: a quantitative study. Frontiers in Education. Frontiers, vol. 10. https://doi.org/10.3389/feduc.2025.1614673
  39. Perry A. (2023). AI will never convey the essence of human empathy. Nature Human Behaviour, vol. 7, no. 11, pp. 1808-1809. https://doi.org/10.1038/s41562-023-01675-w, https://elibrary.ru/bactjc
  40. Sysoyev P.V., Evstigneev M.N. (2025). Integration of artificial intelligence technologies in language and methodological pre-service teachers' training. Yazyk i kul’tura = Language and Culture, no. 69, pp. 204-219. (In Russ.) https://doi.org/10.17223/19996195/69/10, https://elibrary.ru/guzvbi
  41. A model of language and methodological pre-service teachers’ training based on artificial intelligence tech-nologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review. Se-ries: Humanities, vol. 29, no. 5, pp. 1222-1238. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-5-1222-1238, https://elibrary.ru/ipnyou

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».