Pedagogical interaction as “polylogue” of meaning perspectives: revisiting the problem of personal agency in dealing with intelligent systems

Cover Page

Cite item

Full Text

Abstract

Importance. In the context of the new educational reality mediated by artificial intelligence tools, the key pedagogical category, that of pedagogical interaction, proves to be less and less in demand as focus of research, which makes it difficult to consider current educational practices and develop theory, particularly in fields connected with language, meaning-making, and verbal communication. The article aims to consider the specific features of modern educational process, pedagogical interaction in particular, mediated by artificial intelligence (AI) tools.

Materials and Methods. The research methods embrace a complex of instruments, namely: analysis of pedagogical science discourse, products of teaching and learning activities; comparison, synthesis, systematization, and interpretation of data obtained; monitoring the educational process, survey of participants in the pilot research, expert evaluation of the analysis results.

Results and Discussion. The study contributed to determining the functional capacity of the main agents of the AI-mediated educational process and discovering problem areas of pedagogical interaction as a meaning-making factor. Agency potentials in AI-mediated meaning-making interaction were assessed, with the theoretical findings checked in pilot teaching aimed at testing a “polylogue” of meaning perspectives scenario as meaning-making interaction. Two stable indicators were established: the number of participants who prefer the AI-mediated format of FL learning and believe AI can completely replace a FL professor at a university (20 %), and the number of those who exclude this possibility for themselves (36 %). The group of participants who initially could not make their choice (44 %) decreased by 24 % (to 20 %) during the pilot training – due to an increase in the number of those who do not consider the format of interaction with AI to be preferable for themselves.

Conclusion. Pedagogical “risks” for agents of AI-mediated meaning-making interaction are grouped around such areas as data unreliability, content bias in AI-generated products, and devaluation of pedagogical meanings. At the same time, the results of the study show that language pedagogy has a unique potential in producing multi-agent meaning-making interaction in the scope of AI, encouraging the “polylogue” of meaning perspectives, integrating and multiplying socially and personally relevant meanings on a broad interdisciplinary basis, which may be the focus of further research.

About the authors

L. V. Yarotskaya

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Author for correspondence.
Email: lvyar@yandex.ru
Ludmila V. Yarotskaya, Dr. Sci. (Education), Professor at the Linguistic Training for Special Purposes (No. 62) Department, Leading Expert of the Analysis and Forecasting of World Science and Technology Development Centre, International Relations InstituteScopus Author ID: 57203020422 ResearcherID: X-1785-201831 Kashirskoe Rte., Moscow, 115409 Russian Federation

References

  1. Ashok M., Madan R., Joha A., Sivarajah U. Ethical framework for Artificial Intelligence and digital technologies // International Journal of Information Management. 2022. Vol. 62. Art. 102433. https://doi.org/10.1016/j.ijinfomgt.2021.102433
  2. O’Dea X., O’Dea M. Is Artificial Intelligence really the next big thing in learning and teaching in higher educa-tion? // Journal of University Teaching and Learning Practice. 2023. Vol. 20. № 5. Art. 5. https://doi.org/10.53761/1.20.5.06
  3. Xu W., Ouyang F. A systematic review of AI role in the educational system based on a proposed conceptual framework // Education and Information Technologies. 2022. № 27. P. 4195-4223. https://doi.org/10.1007/s10639-021-10774-y
  4. Константинова Л.В., Ворожихин В.В., Петров А.М., Титова Е.С., Штыхно Д.А. Генеративный искусственный интеллект в образовании: дискуссии и прогнозы // Открытое образование. 2023. Т. 27. № 2. С. 36-48. https://doi.org/10.21686/1818-4243-2023-2-36-48, https://elibrary.ru/vpmizk
  5. Сысоев П.В. Искусственный интеллект в образовании: осведомленность, готовность и практика приме-нения преподавателями высшей школы технологий искусственного интеллекта в профессиональной дея-тельности // Высшее образование в России. 2023. Т. 32. № 10. С. 9-33. https://doi.org/10.31992/0869-3617-2023-32-10-9-33, https://elibrary.ru/tzytkm
  6. Cысоев П.В., Филатов Е.М. Чат-боты в обучении иностранному языку: преимущества и спорные вопросы // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2023. Т. 28. № 1. С. 66-72. https://doi.org/10.20310/1810-0201-2023-28-1-66-72, https://elibrary.ru/pxgztj
  7. Berendt B., Littlejohn A., Blakemore M. AI in education: learner choice and fundamental rights // Learning Me-dia and Technology. 2020. Vol. 45. № 3. P. 312-324. https://doi.org/10.1080/17439884.2020.1786399
  8. Holmes W., Porayska-Pomsta K., Holstein K. et al. Ethics of AI in education: towards a community-wide framework // International Journal of Artificial Intelligence in Education. 2021. Vol. 32. P. 504-526. https://doi.org/10.1007/s40593-021-00239-1
  9. Malinka K. et al. On the educational impact of ChatGPT: is artificial intelligence ready to obtain a university degree? // Conference on Innovation and Technology in Computer Science Education “Proceedings of the 2023”. 2023. Vol. 1. P. 47-53. https://doi.org/10.1145/3587102.3588827
  10. Waltzer T., Cox R.L., Heyman G.D. Testing the ability of teachers and students to differentiate between essays generated by ChatGPT and high school students // Human Behavior and Emerging Technologies. 2023. № 1. P. 1-9. https://doi.org/10.1155/2023/1923981
  11. Клочихин В.В. Корпусные технологии искусственного интеллекта в обучении сочетаемости слов и исследовательской работе // Иностранные языки в школе. 2024. № 3. С. 39-46. https://elibrary.ru/jfylhf
  12. Сысоев П.В., Золотов П.Ю. Формирование прагматической компетенции студентов на основе корпусных технологий // Язык и культура. 2020. № 51. С. 229-246. https://doi.org/10.17223/19996195/51/12, https://elibrary.ru/qmhhsr
  13. Яроцкая Л.В., Алейникова Д.В. Лингводидактическая проекция социально-гуманитарной сферы в контуре искусственного интеллекта. Москва: Триумф, 2024. 164 с. https://doi.org/10.29039/978-5-94472-207-2-07-2024, https://elibrary.ru/eptcnv
  14. Левин Б.А., Пискунов А.А., Поляков В.Ю., Савин А.В. Искусственный интеллект в инженерном образовании // Высшее образование в России. 2022. Т. 31. № 7. С. 79-95. https://doi.org/10.31992/0869-3617-2022-31-7-79-95, https://elibrary.ru/kcnap,
  15. Feuerriegel S., Shrestha Y.R., von Krogh G., Zhang C. Bringing artificial intelligence to business management // Nature Machine Intelligence. 2022. Vol. 4. P. 611-613. https://doi.org/10.1038/s42256-022-00512-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».