ON EXISTENCE OF PERIODIC SOLUTIONS OF AN ORDINARY SECOND-ORDER DIFFERENTIAL EQUATION WITH PARAMETER AND DISCONTINUOUS RIGHT-HAND SIDE WITH VARIOUS BOUNDARY CONDITIONS
- Авторлар: Baskov O.V1, Potapov D.K1
-
Мекемелер:
- Saint Petersburg State University
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 147–161
- Бөлім: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/299121
- DOI: https://doi.org/10.31857/S0374064125020016
- EDN: https://elibrary.ru/HXOCSX
- ID: 299121
Дәйексөз келтіру
Аннотация
An ordinary second-order differential equation with positive parameter and discontinuous right-hand side which changes its sign at the point of the jump is considered. Various boundary value problems for it are formulated, including mixed and periodic boundary conditions. Theorems on existence of periodic solutions of the studied boundary value problems are established. The obtained results are illustrated by examples.
Авторлар туралы
O. Baskov
Saint Petersburg State University
Email: o.baskov@spbu.ru
D. Potapov
Saint Petersburg State University
Email: d.potapov@spbu.ru
Әдебиет тізімі
- Llibre, J. Periodic solutions of discontinuous second order differential systems / J. Llibre, M.A. Teixeira // J. Singularities. — 2014. — V. 10. — P. 183–190.
- Bonanno, G. Sturm–Liouville equations involving discontinuous nonlinearities / G. Bonanno, G. D’Agui, P. Winkert // Minimax Theory Appl. — 2016. — V. 1, № 1. — P. 125–143.
- Kamachkin, A.M. Existence of solutions for second-order differential equations with discontinuous right-hand side / A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva // Electron. J. Differ. Equat. — 2016. — № 124. — P. 1–9.
- Bensid, S. Stability results for discontinuous nonlinear elliptic and parabolic problems with a Sshaped bifurcation branch of stationary solutions / S. Bensid, J.I. Diaz // Disc. Contin. Dyn. Syst. Ser. B. — 2017. — V. 22, № 5. — P. 1757–1778.
- Da Silva, C.E.L. Sliding solutions of second-order differential equations with discontinuous right-hand side / C.E.L. Da Silva, P.R. Da Silva, A. Jacquemard // Math. Meth. Appl. Sci. — 2017. — V. 40, № 14. — P. 5295–5306.
- Pavlenko, V.N. and Postnikova, E.Yu., Sturm–Liouville problem for an equation with a discontinuous nonlinearity, Chelyab. Phys. Math. J., 2019, vol. 4, no. 2, pp. 142–154.
- Da Silva, C.E.L. Periodic solutions of a class of non-autonomous discontinuous second-order differential equations / C.E.L. Da Silva, A. Jacquemard, M.A. Teixeira // J. Dyn. Control Syst. — 2020. — V. 26, № 1. — P. 17–44.
- Fursov, A.S., Mitrev, R.P., Krylov, P.A., and Todorov, T.S., On the existence of a periodic mode in a nonlinear system, Differ. Equat., 2021, vol. 57, no. 8, pp. 1076–1087.
- Yevstafyeva, V.V., Kamachkin, A.M., and Potapov, D.K., Periodic modes in an automatic control system with a three-position hysteresis relay, Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsess Upr., 2022, vol. 18, no. 4, pp. 596–607.
- Baskov, O.V. and Potapov, D.K., Control and perturbation in Sturm–Liouville’s problem with discontinuous nonlinearity, Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsess Upr., 2023, vol. 19, no. 2, pp. 275–282.
- Baskov, O.V. and Potapov, D.K., On solutions of a boundary value problem for a second-order differential equation with a parameter and discontinuous right-hand side, Comput. Math. Math. Phys., 2023, vol. 63, no. 8, pp. 1424–1436.
- Yevstafyeva, V.V., Kamachkin, A.M., and Potapov, D.K., On one type of oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay and a perturbation, Differ. Equat., 2023, vol. 59, no. 2, pp. 153–167.
- Yevstafyeva, V.V., Oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay without entering the saturation zones, Differ. Equat., 2023, vol. 59, no. 6, pp. 726–740.
- Potapov, D.K., Approximation to the Sturm–Liouville problem with a discontinuous nonlinearity, Differ. Equat., 2023, vol. 59, no. 9, pp. 1185–1192.
- Baskov, O.V. and Potapov, D.K., On solutions of the one-dimensional Goldshtik problem, Math. Notes, 2024, vol. 115, no. 1, pp. 12–20.
- Temam, R. A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma / R. Temam // Arch. Ration. Mech. Anal. — 1975. — V. 60. — P. 51–73.
- Fraenkel, L.E. A global theory of steady vortex rings in an ideal fluid / L.E. Fraenkel, M.S. Berger // Acta Math. — 1974. — V. 132, № 1. — P. 13–51.
- Stakgold, I. Free boundary problems in climate modeling / I. Stakgold // Mathematics, Climate and Environment / Eds. J.I. D´ıaz, J.L. Lions. — Paris : Masson, 1993. — P. 177–188.
- Bensid, S. Multiple stationary solutions of parabolic problem with discontinuous nonlinearities and their stability / S. Bensid, Z. Kaid // Complex Var. Elliptic Equat. — 2021. — V. 66, № 3. — P. 487–506.
- Bonanno, G. On ordinary differential inclusions with mixed boundary conditions / G. Bonanno, A. Iannizzotto, M. Marras // Differ. Integral Equat. — 2017. — V. 30, № 3–4. — P. 273–288.
Қосымша файлдар

