ON EXISTENCE OF PERIODIC SOLUTIONS OF AN ORDINARY SECOND-ORDER DIFFERENTIAL EQUATION WITH PARAMETER AND DISCONTINUOUS RIGHT-HAND SIDE WITH VARIOUS BOUNDARY CONDITIONS
- Authors: Baskov O.V1, Potapov D.K1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 61, No 2 (2025)
- Pages: 147–161
- Section: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/299121
- DOI: https://doi.org/10.31857/S0374064125020016
- EDN: https://elibrary.ru/HXOCSX
- ID: 299121
Cite item
Abstract
About the authors
O. V Baskov
Saint Petersburg State University
Email: o.baskov@spbu.ru
D. K Potapov
Saint Petersburg State University
Email: d.potapov@spbu.ru
References
- Llibre, J. Periodic solutions of discontinuous second order differential systems / J. Llibre, M.A. Teixeira // J. Singularities. — 2014. — V. 10. — P. 183–190.
- Bonanno, G. Sturm–Liouville equations involving discontinuous nonlinearities / G. Bonanno, G. D’Agui, P. Winkert // Minimax Theory Appl. — 2016. — V. 1, № 1. — P. 125–143.
- Kamachkin, A.M. Existence of solutions for second-order differential equations with discontinuous right-hand side / A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva // Electron. J. Differ. Equat. — 2016. — № 124. — P. 1–9.
- Bensid, S. Stability results for discontinuous nonlinear elliptic and parabolic problems with a Sshaped bifurcation branch of stationary solutions / S. Bensid, J.I. Diaz // Disc. Contin. Dyn. Syst. Ser. B. — 2017. — V. 22, № 5. — P. 1757–1778.
- Da Silva, C.E.L. Sliding solutions of second-order differential equations with discontinuous right-hand side / C.E.L. Da Silva, P.R. Da Silva, A. Jacquemard // Math. Meth. Appl. Sci. — 2017. — V. 40, № 14. — P. 5295–5306.
- Pavlenko, V.N. and Postnikova, E.Yu., Sturm–Liouville problem for an equation with a discontinuous nonlinearity, Chelyab. Phys. Math. J., 2019, vol. 4, no. 2, pp. 142–154.
- Da Silva, C.E.L. Periodic solutions of a class of non-autonomous discontinuous second-order differential equations / C.E.L. Da Silva, A. Jacquemard, M.A. Teixeira // J. Dyn. Control Syst. — 2020. — V. 26, № 1. — P. 17–44.
- Fursov, A.S., Mitrev, R.P., Krylov, P.A., and Todorov, T.S., On the existence of a periodic mode in a nonlinear system, Differ. Equat., 2021, vol. 57, no. 8, pp. 1076–1087.
- Yevstafyeva, V.V., Kamachkin, A.M., and Potapov, D.K., Periodic modes in an automatic control system with a three-position hysteresis relay, Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsess Upr., 2022, vol. 18, no. 4, pp. 596–607.
- Baskov, O.V. and Potapov, D.K., Control and perturbation in Sturm–Liouville’s problem with discontinuous nonlinearity, Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsess Upr., 2023, vol. 19, no. 2, pp. 275–282.
- Baskov, O.V. and Potapov, D.K., On solutions of a boundary value problem for a second-order differential equation with a parameter and discontinuous right-hand side, Comput. Math. Math. Phys., 2023, vol. 63, no. 8, pp. 1424–1436.
- Yevstafyeva, V.V., Kamachkin, A.M., and Potapov, D.K., On one type of oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay and a perturbation, Differ. Equat., 2023, vol. 59, no. 2, pp. 153–167.
- Yevstafyeva, V.V., Oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay without entering the saturation zones, Differ. Equat., 2023, vol. 59, no. 6, pp. 726–740.
- Potapov, D.K., Approximation to the Sturm–Liouville problem with a discontinuous nonlinearity, Differ. Equat., 2023, vol. 59, no. 9, pp. 1185–1192.
- Baskov, O.V. and Potapov, D.K., On solutions of the one-dimensional Goldshtik problem, Math. Notes, 2024, vol. 115, no. 1, pp. 12–20.
- Temam, R. A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma / R. Temam // Arch. Ration. Mech. Anal. — 1975. — V. 60. — P. 51–73.
- Fraenkel, L.E. A global theory of steady vortex rings in an ideal fluid / L.E. Fraenkel, M.S. Berger // Acta Math. — 1974. — V. 132, № 1. — P. 13–51.
- Stakgold, I. Free boundary problems in climate modeling / I. Stakgold // Mathematics, Climate and Environment / Eds. J.I. D´ıaz, J.L. Lions. — Paris : Masson, 1993. — P. 177–188.
- Bensid, S. Multiple stationary solutions of parabolic problem with discontinuous nonlinearities and their stability / S. Bensid, Z. Kaid // Complex Var. Elliptic Equat. — 2021. — V. 66, № 3. — P. 487–506.
- Bonanno, G. On ordinary differential inclusions with mixed boundary conditions / G. Bonanno, A. Iannizzotto, M. Marras // Differ. Integral Equat. — 2017. — V. 30, № 3–4. — P. 273–288.
Supplementary files
