Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

Том 61, № 7 (2025)

Мұқаба

Бүкіл шығарылым

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

NUMERICAL METHODS

On the construction of difference schemes for calculating viscous gas flows in orthogonal curved coordinates

Abakumov M.

Аннотация

A family of conservative difference schemes for calculating viscous gas flows in arbitrary orthogonal curved coordinates is constructed on the basis of a cartesian Godunov-type difference scheme of a general type. At the same time, the algorithms for calculating the numerical flows of the basic scheme remain unchanged. It is shown that the schemes of the constructed family have a second order of approximation in space, provided that the numerical flows of the basic scheme are calculated with a second or higher order of accuracy.
Differential equations. 2025;61(7):867–881
pages 867–881 views

OPERATOR-DIFFERENCE SCHEMES FOR SYSTEMS OF FIRST-ORDER INTEGRO-DIFFERENTIAL EQUATIONS

Vabishchevich P.

Аннотация

The Cauchy problem is considered for a system of two first-order integro-differential equations with memory in finite-dimensional Hilbert spaces, where the integral term contains a difference kernel. Such mathematical model is typical for nonstationary electromagnetic processes, taking into account the dispersion effects of the electric field. To obtain an approximate solution to the considered nonlocal problem, a transformation to a local Cauchy problem for a system of first-order equations is applied, based on approximating the difference kernel by a sum of exponentials. Two-level operator-difference schemes in Hilbert spaces are constructed and analyzed for stability.
Differential equations. 2025;61(7):882–891
pages 882–891 views

MATHEMATICAL MODELING OF THE MOTION OF METAL CONDUCTORS IN AN ELECTROMAGNETIC FIELD TAKEN INTO ACCOUNT OF THE PRESENCE OF DIFFERENT PHASES OF THE ACCELERATED MATTER

Galanin M., Rodin A.

Аннотация

The problem of mathematical modeling of the acceleration of metal conductors in an electromagnetic field in a two-dimensional approximation has been solved. Mathematical models are presented to describe the motion of bodies using Lagrangian and Eulerian coordinates using the constitutive relations of a thermoelastoplastic body (for the case of large deformations) and a viscous compressible fluid (gas). A mathematical model is presented that allows us to describe the movement of a body taking into account the presence of different phases of matter in it at one point in time. The model explicitly identifies the transition phase from solid to liquid; for this phase, both constitutive relations are taken into account, taken with appropriate weights. Numerical algorithms based on the finite element method have been constructed. The presented model is used to solve the problem of accelerating an aluminum cylindrical shell to a velocity of about 8 km/s. The calculation results are demonstrated, and individual characteristics are compared with known calculated and experimental results.
Differential equations. 2025;61(7):892–909
pages 892–909 views

IDENTIFICATION OF THE ORDER OF FRACTIONAL DERIVATIVE IN WINDKESSEL MODEL

Gamilov T., Kirichenko Y., Yanbarisov R., Valetov D.

Аннотация

We investigate windkessel blood flow model with fractional derivative. A cost-effective numerical ap- proximation of the model equation is considered, which allows calculations with high precision. The approximation is tested on the proposed special case with the existing analytical solution. We use pro- posed numerical approximation to test various methods to identify the fractional order from real blood pressure profiles. The obtained methods allow to determine the order of the fractional derivative with an accuracy not worse than 15 %.
Differential equations. 2025;61(7):910–918
pages 910–918 views

A FULLY CONSERVATIVE FINITE DIFFERENCE SCHEME FOR THREE-DIMENSIONAL NAVIER–STOKES EQUATIONS IN CYLINDRICAL COORDINATES

Gusev A., Mazhorova O.

Аннотация

The fully conservative finite volume discretization of the incompressible Navier–Stokes equations in cylindrical coordinates is constructed on a staggered grid. The proposed discretization ensures momentum conservation in a computational domain, and mass conservation within the control volumes for pressure, and velocity components. The energy conservation equation directly follows from the discrete momentum equation. Both conservative and non-conservative forms of convective terms are approximated. The proposed discrete counterpart of the vector Laplace operator is self-adjoint and negative definite.
Differential equations. 2025;61(7):919–940
pages 919–940 views

NUMERICAL SOLUTION OF THE INVERSE COEFFICIENT PROBLEM FOR A MATHEMATICAL MODEL OF DESORPTION DYNAMICS

Denisov A., Zhu D.

Аннотация

An inverse coefficient problem for a mathematical model of desorption dynamics is considered. The inverse problem is reduced to a nonlinear operator equation for an unknown coefficient. The operator equation is used to construct an iterative numerical method for solving the inverse problem. To prove the convergence of the iterative method, the contraction mappings principle is used. Examples of the application of the iterative method for the numerical solution of the inverse problem are given.
Differential equations. 2025;61(7):941–951
pages 941–951 views

NUMERICAL STUDIES OF TWO-PHASE HYPERELASTIC MODEL

Ermakov I., Polekhina R., Savenkov E.

Аннотация

The paper is devoted to numerical studies of two-phase hyperbolic model describing the dynamics of hyperelastic media. The considered model is a generalization of the well known model of multivelocity fully nonequilibrium Baer–Nunziato model, widely used for description of shock-wave and detonation processes in multiphase media. The equations of the model are given both in the general and in the spatially one-dimensional case, and its properties are described. For numerical study, the pathconservative HLL method is applied. The numerical study is carried using a number of Riemann problems.
Differential equations. 2025;61(7):952–970
pages 952–970 views

GRID-CHARACTERISTIC TWO-DIMENSIONAL SCHEMES FOR DYNAMIC PROBLEMS OF LINEARLY ELASTIC LAYERED MEDIA

Mi X., Golubev V., Golubeva Y.

Аннотация

The paper considers the stress-strain state of a layered geological medium under the influence of an external dynamic load. Each layer is described by an isotropic linear elastic model with specified mechanical parameters. For the numerical simulation of the wave propagation process in a two-dimensional problem formulation, a grid-characteristic scheme of a high approximation order was constructed. The issues of approximating boundary and contact conditions, the problem of the accuracy reduction for spatial splitting schemes are addressed. The numerical solution results for test problems are presented.
Differential equations. 2025;61(7):971–985
pages 971–985 views

INTERNAL ESTIMATION OF THE INFORMATION SET OF THE PROBLEM OF PARAMETRIC IDENTIFICATION OF DYNAMIC SYSTEMS BASED ON INTERVAL DATA

Morozov A., Reviznikov D.

Аннотация

The paper considers the method of internal interval estimation of the information set of the problem of parametric identification of dynamic systems, when the experimental data are specified in the form of intervals. The state of the dynamic systems under consideration at each moment of time is a parametric set. The objective function is constructed in the space of interval estimates of parameters, characterizing the degree of inclusion of parametric sets of states in the specified experimental interval estimates of phase variables. An expression for the gradient of the objective function is obtained. The proposed approach consists of two stages. At the first stage, the objective function is minimized by first-order optimization methods, and at the second stage, the obtained estimate of the information set is successively expanded with control of the value of the objective function. To solve a variety of direct problems in the process of constructing the desired estimate, the adaptive interpolation algorithm previously developed by the authors is used. The efficiency and performance of the approach under consideration is demonstrated on a representative series of problems.
Differential equations. 2025;61(7):986–999
pages 986–999 views

FINITE DIFFERENCE INTEGRO-INTERPOLATION METHOD FOR DISCONTINUOUS SOLUTIONS OF THE USADEL EQUATIONS

Khapaev M., Kupriyanov M.

Аннотация

The paper considers a one-dimensional problem for elliptic equations with nonstandard jump conditions on the inner boundary and a discontinuous solution. The integro-interpolation (balance) method is used to approximate the problem, including the junction condition on the inner boundary, which leads, in the case of Roben relations (the jump of the solution is proportional to the flux), to a four-point pattern. This difference scheme is used to solve the system of nonlinear Uzadel equations, which is the basic mathematical model at the microlevel for describing currents and fields in superconductors, including those with Josephson junctions. The results of calculations for the Abrikosov vortex problem are presented and the accuracy of the proposed approach is investigated, including for a simplified three-point scheme.
Differential equations. 2025;61(7):1000–1008
pages 1000–1008 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».