Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 60, No 1 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

GOLOMORFNAYa REGULYaRIZATsIYa SINGULYaRNO VOZMUShch¨ENNYKh INTEGRO-DIFFERENTsIAL'NYKh URAVNENIY

Besov V.S., Kachalov V.I.

Abstract

Для решения весьма важных с точки зрения приложений интегро-дифференциальных сингулярно возмущённых уравнений давно применяется метод регуляризации С.А. Ломова. При этом представляющие решения этих уравнений ряды по степеням малого параметра сходились асимптотически. Однако, в соответствии с основной концепцией метода, для построения общей теории сингулярных возмущений требуется указать условия обычной сходимости таких рядов, что и рассматривается в данной статье.
Differencial'nye uravneniya. 2024;60(1):3-12
pages 3-12 views

OTRAZhAYuShchAYa FUNKTsIYa I OBOBShchENIE PONYaTIYa PERVOGO INTEGRALA

Mironenko V.I., Mironenko V.V.

Abstract

Прослеживаются связи понятия обобщённого интеграла с понятиями отражающей функции и отображения Пуанкаре (отображения за период) для периодических дифференциальных систем. Понятие обобщённого первого интеграла применяется при изучении вопросов существования и устойчивости периодических решений периодических дифференциальных систем и исследовании проблемы центра-фокуса.
Differencial'nye uravneniya. 2024;60(1):13-23
pages 13-23 views

EKVIVALENTNYE DIFFERENTsIAL'NYE URAVNENIYa V ZADAChAKh TEORII UPRAVLENIYa I TEORII GAMIL'TONOVYKh SISTEM

Yumagulov M.G., Ibragimova L.S.

Abstract

Предложены новые подходы в задаче конструирования для многомерных нелинейных систем теории управления эквивалентных скалярных дифференциальных уравнений, а также в задаче конструирования для нелинейных уравнений Лурье (скалярных дифференциальных уравнений, содержащих производные только чётных порядков) эквивалентных гамильтоновых систем. Изучены условия разрешимости соответствующих задач, предложены новые формулы перехода к эквивалентным уравнениям и системам. Для уравнений Лурье предлагаемые подходы основаны на переходе от линейной части к нормальным формам соответствующих гамильтоновых систем с последующим преобразованием найденной системы. Получены расчётные формулы и алгоритмы, эффективность которых иллюстрируется примерами.
Differencial'nye uravneniya. 2024;60(1):24-40
pages 24-40 views

OBRATNAYa ZADAChA OPREDELENIYa DVUKh KOEFFITsIENTOV PRI MLADShIKh ChLENAKh PARABOLO-GIPERBOLIChESKOGO URAVNENIYa

Durdiev D.K.

Abstract

Изучены прямая и обратная задачи для модельного уравнения смешанного парабологиперболического типа. В прямой задаче рассмотрена задача типа Трикоми для этого уравнения с нехарактеристической линией изменения типа. Неизвестными обратной задачи являются переменные коэффициенты при младших членах уравнения. Для их определения относительно решения, определяемого в параболической части области, задано интегральное условие переопределения, а в гиперболической части заданы условия на характеристиках: на одной — значение нормальной производной, а на другой — значение самой функции. Доказаны теоремы однозначной разрешимости поставленных задач в смысле классического решения.
Differencial'nye uravneniya. 2024;60(1):41-54
pages 41-54 views

PRIMENENIE DIFFERENTsIAL'NO-GEOMETRIChESKIKh METODOV TEORII UPRAVLENIYa V TEORII DIFFERENTsIAL'NYKh URAVNENIY S ChASTNYMI PROIZVODNYMI. III

.I.

Abstract

Рассматриваются симметрии уравнений с частными производными на основе использования дифференциально-геометрических и алгебраических методов теории динамических систем с управлением.
Differencial'nye uravneniya. 2024;60(1):55-63
pages 55-63 views

STRUKTURA VNUTRENNEGO PEREKhODNOGO SLOYa V ZADAChE REAKTsIYa–DIFFUZIYa V SLUChAE SBALANSIROVANNOY REAKTsII SO SLABYM RAZRYVOM

.I., .T., .A.

Abstract

Для сингулярно возмущённого уравнения типа реакция–диффузия исследована структура внутреннего переходного слоя в случае сбалансированной реакции со слабым разрывом. Доказано существование решений с внутренним переходным слоем (контрастных структур), исследован вопрос об их устойчивости, получены асимптотические приближения решений указанного типа. Показано, что в случае баланса реакции наличие даже слабого (асимптотически малого) разрыва реакции может приводить к образованию контрастных структур конечного размера, как устойчивых, так и неустойчивых.
Differencial'nye uravneniya. 2024;60(1):64-75
pages 64-75 views

REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM H2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E

Pavlenko V.A.

Abstract

Настоящая статья продолжает серию работ, в которых построены 2×2-матричные совместные решения двух скалярных эволюционных уравнений, являющиеся аналогами временн´ых уравнений Шрёдингера. В построениях данной статьи эти уравнения соответствуют гамильтоновой системе H2+2+1 — одной из представительниц иерархии вырождений изомонодромной системы Гарнье. Упомянутую иерархию описал Х. Кимура в 1986 году. В терминах решений линейных систем дифференциальных уравнений метода изомонодромных деформаций, условием совместности которых являются гамильтоновы уравнения системы H2+2+1, конструируемые совместные матричные решения аналогов временн´ых уравнений Шрёдингера в настоящей работе выписаны явно.
Differencial'nye uravneniya. 2024;60(1):76-89
pages 76-89 views

METOD FUNKTsIONALOV LYaPUNOVA I OGRANIChENNOST' REShENIY I IKh PERVYKh I VTORYKh PROIZVODNYKh LINEYNOGO URAVNENIYa TRET'EGO PORYaDKA TIPA VOL'TERRY NA POLUOSI

Iskandarov S.

Abstract

Устанавливаются достаточные условия ограниченности на полуоси всех решений и их первых двух производных линейного интегро-дифференциального уравнения третьего порядка типа Вольтерры. Для этого рассматриваемое уравнение с помощью метода, предложенного первым автором в 2006 году, сначала сводится к эквивалентной системе, состоящей из одного дифференциального уравнения первого порядка и одного вольтеррова интегро-дифференциального уравнения второго порядка. Затем для этой системы предлагается новый обобщённый функционал Ляпунова, доказывается его неотрицательность на её решениях и приводится оценка сверху производной этого функционала через исходный функционал. Найденная оценка представляет собой интегро-дифференциальное неравенство, решение которого даёт оценку функционала.
Differencial'nye uravneniya. 2024;60(1):90-98
pages 90-98 views

UPRAVLENIE SPEKTROM SISTEMY NEYTRAL'NOGO TIPA

Metel'skiy A.V.

Abstract

Для линейной автономной системы нейтрального типа с соизмеримыми запаздываниями приведён алгоритм решения задачи модальной управляемости (в частности, назначения конечного спектра), обеспечивающий замкнутой системе заданный характеристический квазиполином. Предложена процедура редактирования конечной части спектра. Конструктивно обоснован критерий экспоненциальной стабилизации изучаемой системы. При выполнении критерия, согласно предложенному алгоритму спектрального приведения, замкнутая система может быть сделана экспоненциально устойчивой. Полученные утверждения и алгоритмы управления спектром проиллюстрированы примерами.
Differencial'nye uravneniya. 2024;60(1):99-125
pages 99-125 views

O ZADAChE UPRAVLENIYa NELINEYNOY SISTEMOY POSREDSTVOM DISKRETNOGO UPRAVLENIYa V USLOVIYaKh VOZDEYSTVIYa POMEKhI

Shchelchkov K.A.

Abstract

Рассматривается задача стабилизации в нуль в условиях воздействия помехи в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компактом. Целью управления, т.е. целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперёд заданную окрестность нуля вне зависимости от действий помехи. Для построения управления преследователю известны только фазовые координаты в некоторые дискретные моменты времени и неизвестен выбор управления помехи. В работе получены условия существования окрестности нуля, из каждой точки которой происходит поимка в указанном смысле. Выигрышное управление строится конструктивно и имеет дополнительное свойство, указанное в теореме. Кроме того, получена оценка времени поимки, которая является неуменьшаемой в некотором смысле.
Differencial'nye uravneniya. 2024;60(1):126-134
pages 126-134 views

OB OTsENKAKh POGREShNOSTEY OPERATOROV DISKRETIZATsII REShENIYa URAVNENIYa PUASSONA

Utesov A.B.

Abstract

Построен оператор дискретизации решения уравнения Пуассона с правой частью из класса Коробова и оценена его погрешность в метрике L𝑝, 2 ⩽ 𝑝 ⩽ ∞. Доказано, что при 𝑝 = 2 полученная оценка погрешности оператора дискретизации является неулучшаемой по порядку в степенной шкале. Также найдена погрешность вычисления тригонометрических коэффициентов Фурье, используемых при построении оператора дискретизации. Следует отметить, что полученная оценка в одном случае лучше ранее известных оценок погрешностей операторов дискретизации, построенных по значениям правой части уравнения в узлах модифицированной сетки Коробова и сетки Смоляка, а другом — совпадает с ними с точностью до констант.
Differencial'nye uravneniya. 2024;60(1):135-142
pages 135-142 views

K DEVYaNOSTOLETIYu ANATOLIYa IVANOVIChA PEROVA

- -.
Differencial'nye uravneniya. 2024;60(1):143-144
pages 143-144 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».