UPRAVLENIE SPEKTROM SISTEMY NEYTRAL'NOGO TIPA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Для линейной автономной системы нейтрального типа с соизмеримыми запаздываниями приведён алгоритм решения задачи модальной управляемости (в частности, назначения конечного спектра), обеспечивающий замкнутой системе заданный характеристический квазиполином. Предложена процедура редактирования конечной части спектра. Конструктивно обоснован критерий экспоненциальной стабилизации изучаемой системы. При выполнении критерия, согласно предложенному алгоритму спектрального приведения, замкнутая система может быть сделана экспоненциально устойчивой. Полученные утверждения и алгоритмы управления спектром проиллюстрированы примерами.

About the authors

A. V Metel'skiy

References

  1. Красовский Н.Н., Осипов Ю.С. О стабилизации движения управляемого объекта с запаздыванием в системе регулирования // Изв. АН СССР. Техн. кибернетика. 1963. № 6. С. 3–15.
  2. Шиманов С.Н. К теории линейных дифференциальных уравнений с последействием // Дифференц. уравнения. 1965. Т. 1. № 1. С. 102–116.
  3. Manitius A., Triggiani R. Function space controllability of linear retarded systems: a derivation from abstract operator conditions // SIAM J. Control Optimization. 1978. V. 16. № 4. P. 599–645.
  4. Bhat K.P., Koivo H.N. Modal characterization of controllability and observability of time-delay systems// IEEE Transactions on Autom. Control. 1976. AC-21. № 2. P. 292–293.
  5. Manitius A.Z., Olbrot A.W. Finite spectrum assignment problem for systems with delays // IEEE Transactions on Autom. Control. 1979. AC-24. № 4. P. 541–553.
  6. Watanabe K., Ito M., Kaneko M. Finite spectrum assignment problem for systems with multiple commensurate delays in state variables // Int. J. Contr. 1983. V. 38. № 5. P. 913–926.
  7. Метельский А.В. Алгебраический подход к стабилизации дифференциальной системы запаздывающего типа // Дифференц. уравнения. 2018. Т. 54. № 8. C. 1119–1131.
  8. Pandolfi L. Stabilization of neutral functional differential equations // J. Optim. Theory Appl. 1976. V. 20. № 2. P. 191–204.
  9. Hale J.K., Verduyn Lunel S.M. Strong stabilization of neutral functional differential equations // IMA J. Math. Control Inf. 2002. V. 19. № 1–2. P. 5–23.
  10. Chen J.D., Lien C.H., Fan K.K., Chou J.H. Criteria for asymptotic stability of a class of neutral systems via a LMI approach // IEE Proceedings — Control Theory and Applications. 2001. V. 148. № 6. P. 442–447.
  11. Rabah R., Sklyar G.M., Barkhayev P.Y. Stability and stabilizability of mixed retarded-neutral type systems // ESAIM Control, Optimization and Calculus of Variations. 2012. V. 18. № 3. P. 656–692.
  12. Park J.H., Won S. Asymptotic stability of neutral systems with multiple delays // J. of Optimization Theory and Applications. 1999. V. 103. № 1. P. 183–200.
  13. Hu G.-D. An observer-based stabilizing controller for linear neutral delay systems // Siberian Math. J. 2022. V. 63. № 4. P. 789–800.
  14. Карпук В.В., Метельский А.В. Полное успокоение и стабилизация линейных автономных систем с запаздыванием // Изв. РАН. Теория и системы управления. 2009. № 6. C. 19–28.
  15. Метельский А.В., Карпук В.В. О свойствах точечно вырожденных линейных автономных систем управления. I // Автоматика и телемеханика. 2009. № 10. С. 22–34.
  16. Метельский А.В., Хартовский В.Е. Критерии модальной управляемости линейных систем нейтрального типа // Дифференц. уравнения. 2016. Т. 52. № 11. C. 1506–1521.
  17. Метельский А.В., Хартовский В.Е. Синтез регуляторов успокоения решения вполне регулярных дифференциально-алгебраических систем с запаздыванием // Дифференц. уравнения. 2017. Т. 53. № 4. C. 547–558.
  18. Метельский А.В., Хартовский В.Е. О точном восстановлении решения линейных систем нейтрального типа // Дифференц. уравнения. 2021. Т. 57. № 2. C. 265–285.
  19. Метельский А.В., Карпук В.В. Финитная стабилизация дифференциальных систем с несоизмеримыми запаздываниями // Дифференц. уравнения. 2022. Т. 58. № 1. C. 105–119.
  20. Метельский А.В. Стабилизация дифференциально-разностной системы запаздывающего типа // Дифференц. уравнения. 2023. Т. 59. № 4. С. 531–553.
  21. Метельский А.В., Минюк С.А. Критерии конструктивной идентифицируемости и полной управляемости линейных стационарных систем нейтрального типа с запаздыванием // Изв. РАН. Теория и системы управления. 2006. № 5. С. 15–23.
  22. Хартовский В.Е., Павловская А.Т. Полная управляемость и управляемость линейных автономных систем нейтрального типа // Автоматика и телемеханика. 2013. № 5. С. 59–79.
  23. Метельский А.В. Задача назначения конечного спектра для дифференциальной системы нейтрального типа // Дифференц. уравнения. 2015. Т. 51. № 1. С. 70–83.
  24. Гантмахер Ф.Р. Теория матриц. М., 1988.
  25. Беллман Р., Кук К.Л. Дифференциально-разностные уравнения. М., 1967.
  26. Метельский А.В. Задача назначения конечного спектра для системы запаздывающего типа // Дифференц. уравнения. 2014. Т. 50. № 5. С. 692–701.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».