Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 210, № 8 (2019)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Изоморфизмы и элементарная эквивалентность групп Шевалле над коммутативными кольцами

Бунина Е.И.

Аннотация

В настоящей работе доказано, что две группы Шевалле с неразложимыми системами корней ранга $>1$ над коммутативными кольцами (содержащими дополнительно $1/2$ для типов $\mathbf A_2$, $\mathbf B_l$, $\mathbf C_l$, $\mathbf F_4$ и $\mathbf G_2$ и $1/3$ для типа $\mathbf G_2$) изоморфны или элементарно эквивалентны тогда и только тогда, когда соответствующие системы корней совпадают, решетки весов представления алгебры Ли совпадают, а кольца изоморфны или элементарно эквивалентны соответственно. Также описаны изоморфизмы присоединенных (элементарных) групп Шевалле над кольцами описанных типов.Библиография: 25 названий.
Математический сборник. 2019;210(8):3-28
pages 3-28 views

Задача о сближении управляемой системы с компактом в фазовом пространстве при наличии фазовых ограничений

Ершов А.А., Ушаков А.В., Ушаков В.Н.

Аннотация

Рассматривается управляемая система в конечномерном евклидовом пространстве, стесненная фазовым ограничением. Исследуется задача о сближении системы с целевым множеством в фиксированный момент времени. Предлагается подход к конструированию приближенного решения задачи о сближении. Основу этого подхода составляет использование понятия множества разрешимости задачи о сближении.Библиография: 24 названия.
Математический сборник. 2019;210(8):29-66
pages 29-66 views

О максимизаторах оператора свертки в пространствах $L_p$

Калачев Г.В., Садов С.Ю.

Аннотация

Рассматривается оператор свертки в $\mathbb R^d$ с ядром из $L_q$, действующий из $L_p$ в $L_s$, где $1/p+1/q=1+1/s$. Доказано, что при $1< q,p,s< \infty$ существует максимизатор – функция с единичной $p$-нормой, на которой достигается верхняя грань $s$-нормы свертки. Отдельно проанализированы случаи, когда один из показателей $q$, $p$, $s$ равен $1$ или $\infty$.
Библиография: 12 названий.

Математический сборник. 2019;210(8):67-86
pages 67-86 views

Дифференцируемость $?(x)$-функции Минковского. III

Кан И.Д.

Аннотация

В статье доказывается новая теорема о производной функции Минковского.Библиография: 14 названий.
Математический сборник. 2019;210(8):87-119
pages 87-119 views

Выпуклая тригонометрия с приложениями к субфинслеровой геометрии

Локуциевский Л.В.

Аннотация

В статье предложен новый удобный метод описания плоских выпуклых компактных множеств и их поляр, обобщающий классические тригонометрические функции $\sin$ и $\cos$. По-видимому, этот метод может оказаться полезным для явного описания решений задач оптимального управления с двумерным управлением. С его помощью в статье проведено исследование серии субфинслеровых задач с двумерным управлением из произвольного выпуклого множества $\Omega$ для случаев Гейзенберга, Грушина, Мартине, Энгеля и Картана. Особое внимание уделено ситуации, когда $\Omega$ – выпуклый многоугольник.Библиография: 13 названий.
Математический сборник. 2019;210(8):120-148
pages 120-148 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».