Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 212, Nº 10 (2021)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Stationary points of the Minkowski function

Gayfulin D., Kan I.

Resumo

A new theorem on the derivative of the Minkowski function is proved.Bibliography: 11 titles.
Matematicheskii Sbornik. 2021;212(10):3-15
pages 3-15 views

The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincare complexes and their applications

Grbić J., Vučić A.

Resumo

In this paper, using homotopy theoretical methods we study the degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Necessary and sufficient algebraic conditions for the existence of mapping degrees between such Poincare complexes are established. These conditions allow us, up to homotopy, to construct explicitly all maps with a given degree. As an application of mapping degrees, we consider maps between ${(n-1)}$-connected $(2n+1)$-dimensional Poincare complexes with degree $\pm 1$, and give a sufficient condition for these to be homotopy equivalences. This resolves a homotopy theoretical analogue of Novikov's question: when is a map of degree $1$ between manifolds a homeomorphism? For low $n$, we classify, up to homotopy, torsion free $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Bibliography: 29 titles.
Matematicheskii Sbornik. 2021;212(10):16-75
pages 16-75 views

The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator

Eliseev A.

Resumo

An asymptotic solution of the linear Cauchy problem in the presence of a ‘weak’ turning point of the limit operator is built using Lomov's regularization method. The major singularities of the problem are written out in an explicit form. Estimates are given with respect to $\varepsilon$, which characterise the behaviour of the singularities as $\varepsilon\to 0$. The asymptotic convergence of the regularized series is proved. The results of the work are illustrated by an example. Bibliography: 8 titles.
Matematicheskii Sbornik. 2021;212(10):76-95
pages 76-95 views

Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain

Korikov D.

Resumo

A family of Cauchy-Dirichlet problems for the wave equations in unbounded domains $\Lambda_{\varepsilon}$ is considered (here $\varepsilon\ge 0$ is a small parameter); a scattering operator $\mathbb{S}_{\varepsilon}$ is associated with each domain $\Lambda_\varepsilon$. For $\varepsilon>0$ the boundaries of $\Lambda_{\varepsilon}$ are smooth, whilw the boundary of the limit domain $\Lambda_{0}$ contains a conical point. The asymptotics of $\mathbb{S}_{\varepsilon}$ as $\varepsilon\to 0$ is determined. Bibliography: 11 titles.
Matematicheskii Sbornik. 2021;212(10):96-130
pages 96-130 views

Slide polynomials and subword complexes

Smirnov E., Tutubalina A.

Resumo

Subword complexes were defined by Knutson and Miller in 2004 to describe Gröbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials. Bibliography: 14 titles.
Matematicheskii Sbornik. 2021;212(10):131-151
pages 131-151 views

A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems

Tselishchev A.

Resumo

Rubio de Francia proved a one-sided Littlewood-Paley inequality for the square function constructed from an arbitrary system ofdisjoint intervals. Later, Osipov proved a similar inequality for Walsh systems. We prove a similar inequality for more general Vilenkin systems.Bibliography: 11 titles.
Matematicheskii Sbornik. 2021;212(10):152-164
pages 152-164 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).