О регуляризованной асимптотике решения задачи Коши при наличии слабой точки поворота у предельного оператора

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе построено методом регуляризации Ломова асимптотическое решение линейной задачи Коши при наличии “слабой” точки поворота у предельного оператора. Выписаны в явном виде основные сингулярности данной задачи. Приведены оценки по $\varepsilon$, характеризующие поведение сингулярностей при $\varepsilon\to 0 $. Доказана асимптотическая сходимость регуляризованных рядов. Результаты работы проиллюстрированы примером.Библиография: 8 названий.

Об авторах

Александр Георгиевич Елисеев

Национальный исследовательский университет «Московский энергетический институт»

кандидат физико-математических наук, доцент

Список литературы

  1. С. А. Ломов, Введение в общую теорию сингулярных возмущений, Наука, М., 1981, 400 с.
  2. А. А. Бободжанов, В. Ф. Сафонов, “Регуляризованная асимптотика решений интегродифференциальных уравнений с частными производными с быстро изменяющимися ядрами”, Уфимск. матем. журн., 10:2 (2018), 3–12
  3. V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N.Y.), 121:1 (2004), 1973–2079
  4. J. Liouville, “Second Memoire sur le developpement des fonctions ou parties de fonctions en series dont les divers termes sont assujetis à satisfaire à une même equation differentielle du second ordre, contenant un paramètre variable”, J. Math. Pure Appl., 2 (1837), 16–35
  5. А. Г. Елисеев, С. А. Ломов, “Теория сингулярных возмущений в случае спектральных особенностей предельного оператора”, Матем. сб., 131(173):4(12) (1986), 544–557
  6. А. Г. Елисеев, Т. А. Ратникова, “Сингулярно возмущенная задача Коши при наличии рациональной «простой» точки поворота у предельного оператора”, Дифференциальные уравнения и процессы управления, 2019, № 3, 63–73
  7. А. Г. Елисеев, “Регуляризованное решение сингулярно возмущенной задачи Коши при наличии иррациональной простой точки поворота”, Дифференциальные уравнения и процессы управления, 2020, № 2, 15–32
  8. А. Г. Елисеев, П. В. Кириченко, “Решение сингулярно возмущенной задачи Коши при наличии «слабой» точки поворота у предельного оператора”, Сиб. электрон. матем. изв., 17 (2020), 51–60

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Елисеев А.Г., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».