The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincare complexes and their applications
- Authors: Grbić J.1, Vučić A.2
-
Affiliations:
- University of Southampton
- University of Belgrade, Faculty of Mathematics
- Issue: Vol 212, No 10 (2021)
- Pages: 16-75
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/142338
- DOI: https://doi.org/10.4213/sm9436
- ID: 142338
Cite item
Abstract
In this paper, using homotopy theoretical methods we study the degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Necessary and sufficient algebraic conditions for the existence of mapping degrees between such Poincare complexes are established. These conditions allow us, up to homotopy, to construct explicitly all maps with a given degree. As an application of mapping degrees, we consider maps between ${(n-1)}$-connected $(2n+1)$-dimensional Poincare complexes with degree $\pm 1$, and give a sufficient condition for these to be homotopy equivalences. This resolves a homotopy theoretical analogue of Novikov's question: when is a map of degree $1$ between manifolds a homeomorphism? For low $n$, we classify, up to homotopy, torsion free $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Bibliography: 29 titles.
About the authors
Jelena Grbić
University of Southampton
Email: J.Grbic@soton.ac.uk
PhD, Professor
Aleksandar Vučić
University of Belgrade, Faculty of Mathematics
References
- H.-J. Baues, “The degree of maps between certain 6-manifolds”, Compositio Math., 110:1 (1998), 51–64
- P. Beben, Jie Wu, “The homotopy type of a Poincare duality complex after looping”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 581–616
- L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Math. Ann., 70:2 (1911), 161–165
- L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115
- F. R. Cohen, J. C. Moore, J. A. Neisendorfer, “Torsion in homotopy groups”, Ann. of Math. (2), 109:1 (1979), 121–168
- Haibao Duan, “Self-maps of the Grassmannian of complex structures”, Compositio Math., 132:2 (2002), 159–175
- Haibao Duan, Shicheng Wang, “The degrees of maps between manifolds”, Math. Z., 244:1 (2003), 67–89
- Hai Bao Duan, Shi Cheng Wang, “Non-zero degree maps between $2n$-manifolds”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 1–14
- A. L. Edmonds, “Deformation of maps to branched coverings in dimension two”, Ann. of Math. (2), 110:1 (1979), 113–125
- M. H. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geometry, 17:3 (1982), 337–453
- M. Golasinski, J. Mukai, “Gottlieb groups of spheres”, Topology, 47:6 (2008), 399–430
- C. Hayat-Legrand, Shicheng Wang, H. Zieschang, “Minimal Seifert manifolds”, Math. Ann., 308:4 (1997), 673–700
- M. Hoffman, “Endomorphisms of the cohomology of complex {G}rassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760
- I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62:1 (1955), 170–197
- C. A. Mcgibbon, “Endomorphisms of the cohomology of complex Grassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760
- Дж. Милнор, “Топология с дифференциальной точки зрения”: Дж. Милнор, А. Уоллес, Дифференциальная топология. Начальный курс, Мир, М., 1972, 178–262
- J. Mukai, K. Yamaguchi, “Homotopy classification of twisted complex projective spaces of dimension 4”, J. Math. Soc. Japan, 57:2 (2005), 461–489
- J. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc., 25, no. 232, Amer. Math. Soc., Providence, RI, 1980, iv+67 pp.
- J. Neisendorfer, Algebraic methods in unstable homotopy theory, New Math. Monogr., 12, Cambridge Univ. Press, Cambridge, 2010, xx+554 pp.
- Yongwu Rong, “Maps between Seifert fibered spaces of infinite $pi_1$”, Pacific J. Math., 160:1 (1993), 143–154
- С. П. Новиков, “Гомотопически эквивалентные гладкие многообразия. I”, Изв. АН СССР. Сер. матем., 28:2 (1964), 365–474
- S. Sasao, “On homotopy type of certain complexes”, Topology, 3:2 (1965), 97–102
- Н. Стинрод, Топология косых произведений, ИЛ, М., 1953, 274 с.
- T. Somma, “Maps between Seifert fibered spaces of infinite $pi_1$”, Pacific J. Math., 160 (1993), 143–154
- Х. Тода, Композиционные методы в теории гомотопических групп сфер, Наука, М., 1982, 222 с.
- C. T. C. Wall, “Poincare complexes. I”, Ann. of Math. (2), 86 (1967), 213–245
- C. T. C. Wall, “Classification of $(n-1)$-connected $2n$-manifolds”, Ann. of Math. (2), 75 (1962), 163–189
- Shicheng Wang, “The $pi_1$-injectivity of self-maps of nonzero degree on 3-manifolds”, Math. Ann., 297:1 (1993), 171–189
- G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978, xxi+744 pp.
Supplementary files

