The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincare complexes and their applications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, using homotopy theoretical methods we study the degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Necessary and sufficient algebraic conditions for the existence of mapping degrees between such Poincare complexes are established. These conditions allow us, up to homotopy, to construct explicitly all maps with a given degree. As an application of mapping degrees, we consider maps between ${(n-1)}$-connected $(2n+1)$-dimensional Poincare complexes with degree $\pm 1$, and give a sufficient condition for these to be homotopy equivalences. This resolves a homotopy theoretical analogue of Novikov's question: when is a map of degree $1$ between manifolds a homeomorphism? For low $n$, we classify, up to homotopy, torsion free $(n-1)$-connected $(2n+1)$-dimensional Poincare complexes. Bibliography: 29 titles.

About the authors

Jelena Grbić

University of Southampton

Email: J.Grbic@soton.ac.uk
PhD, Professor

Aleksandar Vučić

University of Belgrade, Faculty of Mathematics

References

  1. H.-J. Baues, “The degree of maps between certain 6-manifolds”, Compositio Math., 110:1 (1998), 51–64
  2. P. Beben, Jie Wu, “The homotopy type of a Poincare duality complex after looping”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 581–616
  3. L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Math. Ann., 70:2 (1911), 161–165
  4. L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115
  5. F. R. Cohen, J. C. Moore, J. A. Neisendorfer, “Torsion in homotopy groups”, Ann. of Math. (2), 109:1 (1979), 121–168
  6. Haibao Duan, “Self-maps of the Grassmannian of complex structures”, Compositio Math., 132:2 (2002), 159–175
  7. Haibao Duan, Shicheng Wang, “The degrees of maps between manifolds”, Math. Z., 244:1 (2003), 67–89
  8. Hai Bao Duan, Shi Cheng Wang, “Non-zero degree maps between $2n$-manifolds”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 1–14
  9. A. L. Edmonds, “Deformation of maps to branched coverings in dimension two”, Ann. of Math. (2), 110:1 (1979), 113–125
  10. M. H. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geometry, 17:3 (1982), 337–453
  11. M. Golasinski, J. Mukai, “Gottlieb groups of spheres”, Topology, 47:6 (2008), 399–430
  12. C. Hayat-Legrand, Shicheng Wang, H. Zieschang, “Minimal Seifert manifolds”, Math. Ann., 308:4 (1997), 673–700
  13. M. Hoffman, “Endomorphisms of the cohomology of complex {G}rassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760
  14. I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62:1 (1955), 170–197
  15. C. A. Mcgibbon, “Endomorphisms of the cohomology of complex Grassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760
  16. Дж. Милнор, “Топология с дифференциальной точки зрения”: Дж. Милнор, А. Уоллес, Дифференциальная топология. Начальный курс, Мир, М., 1972, 178–262
  17. J. Mukai, K. Yamaguchi, “Homotopy classification of twisted complex projective spaces of dimension 4”, J. Math. Soc. Japan, 57:2 (2005), 461–489
  18. J. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc., 25, no. 232, Amer. Math. Soc., Providence, RI, 1980, iv+67 pp.
  19. J. Neisendorfer, Algebraic methods in unstable homotopy theory, New Math. Monogr., 12, Cambridge Univ. Press, Cambridge, 2010, xx+554 pp.
  20. Yongwu Rong, “Maps between Seifert fibered spaces of infinite $pi_1$”, Pacific J. Math., 160:1 (1993), 143–154
  21. С. П. Новиков, “Гомотопически эквивалентные гладкие многообразия. I”, Изв. АН СССР. Сер. матем., 28:2 (1964), 365–474
  22. S. Sasao, “On homotopy type of certain complexes”, Topology, 3:2 (1965), 97–102
  23. Н. Стинрод, Топология косых произведений, ИЛ, М., 1953, 274 с.
  24. T. Somma, “Maps between Seifert fibered spaces of infinite $pi_1$”, Pacific J. Math., 160 (1993), 143–154
  25. Х. Тода, Композиционные методы в теории гомотопических групп сфер, Наука, М., 1982, 222 с.
  26. C. T. C. Wall, “Poincare complexes. I”, Ann. of Math. (2), 86 (1967), 213–245
  27. C. T. C. Wall, “Classification of $(n-1)$-connected $2n$-manifolds”, Ann. of Math. (2), 75 (1962), 163–189
  28. Shicheng Wang, “The $pi_1$-injectivity of self-maps of nonzero degree on 3-manifolds”, Math. Ann., 297:1 (1993), 171–189
  29. G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978, xxi+744 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Грбич Е., Вучич А.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).