Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data “on the fly” and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.

作者简介

A. Boiarov

St. Petersburg State University; Institute for Problems of Mechanical Engineering

编辑信件的主要联系方式.
Email: a.boiarov@spbu.ru
俄罗斯联邦, St. Petersburg; St. Petersburg

O. Granichin

St. Petersburg State University; Institute for Problems of Mechanical Engineering

编辑信件的主要联系方式.
Email: o.granichin@spbu.ru
俄罗斯联邦, St. Petersburg; St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019