Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters
- 作者: Boiarov A.A.1,2, Granichin O.N.1,2
-
隶属关系:
- St. Petersburg State University
- Institute for Problems of Mechanical Engineering
- 期: 卷 80, 编号 8 (2019)
- 页面: 1403-1418
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/151128
- DOI: https://doi.org/10.1134/S0005117919080034
- ID: 151128
如何引用文章
详细
We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data “on the fly” and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.
作者简介
A. Boiarov
St. Petersburg State University; Institute for Problems of Mechanical Engineering
编辑信件的主要联系方式.
Email: a.boiarov@spbu.ru
俄罗斯联邦, St. Petersburg; St. Petersburg
O. Granichin
St. Petersburg State University; Institute for Problems of Mechanical Engineering
编辑信件的主要联系方式.
Email: o.granichin@spbu.ru
俄罗斯联邦, St. Petersburg; St. Petersburg
补充文件
