Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters
- Autores: Boiarov A.A.1,2, Granichin O.N.1,2
-
Afiliações:
- St. Petersburg State University
- Institute for Problems of Mechanical Engineering
- Edição: Volume 80, Nº 8 (2019)
- Páginas: 1403-1418
- Seção: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/151128
- DOI: https://doi.org/10.1134/S0005117919080034
- ID: 151128
Citar
Resumo
We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data “on the fly” and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.
Palavras-chave
Sobre autores
A. Boiarov
St. Petersburg State University; Institute for Problems of Mechanical Engineering
Autor responsável pela correspondência
Email: a.boiarov@spbu.ru
Rússia, St. Petersburg; St. Petersburg
O. Granichin
St. Petersburg State University; Institute for Problems of Mechanical Engineering
Autor responsável pela correspondência
Email: o.granichin@spbu.ru
Rússia, St. Petersburg; St. Petersburg
Arquivos suplementares
