Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data “on the fly” and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.

Sobre autores

A. Boiarov

St. Petersburg State University; Institute for Problems of Mechanical Engineering

Autor responsável pela correspondência
Email: a.boiarov@spbu.ru
Rússia, St. Petersburg; St. Petersburg

O. Granichin

St. Petersburg State University; Institute for Problems of Mechanical Engineering

Autor responsável pela correspondência
Email: o.granichin@spbu.ru
Rússia, St. Petersburg; St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019