Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters
- Авторы: Boiarov A.A.1,2, Granichin O.N.1,2
-
Учреждения:
- St. Petersburg State University
- Institute for Problems of Mechanical Engineering
- Выпуск: Том 80, № 8 (2019)
- Страницы: 1403-1418
- Раздел: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/151128
- DOI: https://doi.org/10.1134/S0005117919080034
- ID: 151128
Цитировать
Аннотация
We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data “on the fly” and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.
Ключевые слова
Об авторах
A. Boiarov
St. Petersburg State University; Institute for Problems of Mechanical Engineering
Автор, ответственный за переписку.
Email: a.boiarov@spbu.ru
Россия, St. Petersburg; St. Petersburg
O. Granichin
St. Petersburg State University; Institute for Problems of Mechanical Engineering
Автор, ответственный за переписку.
Email: o.granichin@spbu.ru
Россия, St. Petersburg; St. Petersburg
Дополнительные файлы
