Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters
- 作者: Vasil’eva S.N.1, Kan Y.S.1
-
隶属关系:
- Moscow Aviation Institute (National Research University)
- 期: 卷 78, 编号 7 (2017)
- 页面: 1251-1263
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150635
- DOI: https://doi.org/10.1134/S0005117917070074
- ID: 150635
如何引用文章
详细
We propose a method for solving quantile optimization problems with a loss function that depends on a vector of small random parameters. This method is based on using a model linearized with respect to the random vector instead of the original nonlinear loss function. We show that in first approximation, the quantile optimization problem reduces to a minimax problem where the uncertainty set is a kernel of a probability measure.
作者简介
S. Vasil’eva
Moscow Aviation Institute (National Research University)
编辑信件的主要联系方式.
Email: sofia_mai@mail.ru
俄罗斯联邦, Moscow
Yu. Kan
Moscow Aviation Institute (National Research University)
Email: sofia_mai@mail.ru
俄罗斯联邦, Moscow
补充文件
