Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a method for solving quantile optimization problems with a loss function that depends on a vector of small random parameters. This method is based on using a model linearized with respect to the random vector instead of the original nonlinear loss function. We show that in first approximation, the quantile optimization problem reduces to a minimax problem where the uncertainty set is a kernel of a probability measure.

作者简介

S. Vasil’eva

Moscow Aviation Institute (National Research University)

编辑信件的主要联系方式.
Email: sofia_mai@mail.ru
俄罗斯联邦, Moscow

Yu. Kan

Moscow Aviation Institute (National Research University)

Email: sofia_mai@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017