Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We propose a method for solving quantile optimization problems with a loss function that depends on a vector of small random parameters. This method is based on using a model linearized with respect to the random vector instead of the original nonlinear loss function. We show that in first approximation, the quantile optimization problem reduces to a minimax problem where the uncertainty set is a kernel of a probability measure.

Sobre autores

S. Vasil’eva

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: sofia_mai@mail.ru
Rússia, Moscow

Yu. Kan

Moscow Aviation Institute (National Research University)

Email: sofia_mai@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017