Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters
- Авторлар: Vasil’eva S.N.1, Kan Y.S.1
-
Мекемелер:
- Moscow Aviation Institute (National Research University)
- Шығарылым: Том 78, № 7 (2017)
- Беттер: 1251-1263
- Бөлім: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150635
- DOI: https://doi.org/10.1134/S0005117917070074
- ID: 150635
Дәйексөз келтіру
Аннотация
We propose a method for solving quantile optimization problems with a loss function that depends on a vector of small random parameters. This method is based on using a model linearized with respect to the random vector instead of the original nonlinear loss function. We show that in first approximation, the quantile optimization problem reduces to a minimax problem where the uncertainty set is a kernel of a probability measure.
Авторлар туралы
S. Vasil’eva
Moscow Aviation Institute (National Research University)
Хат алмасуға жауапты Автор.
Email: sofia_mai@mail.ru
Ресей, Moscow
Yu. Kan
Moscow Aviation Institute (National Research University)
Email: sofia_mai@mail.ru
Ресей, Moscow
Қосымша файлдар
