On the Convergence of Sample Approximations for Stochastic Programming Problems with Probabilistic Criteria


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider stochastic programming problems with probabilistic and quantile criteria. We describe a method for approximating these problems with a sample of realizations for random parameters. When we use this method, criterial functions of the problems are replaced with their sample estimates. We show the hypoconvergence of sample probability functions to its exact value that guarantees the convergence of approximations for the probability function maximization problem on a compact set with respect to both the value of the criterial function and the optimization strategy. We prove a theorem on the convergence of approximation for the quantile function minimization problem with respect to the value of the criterial function and the optimization strategy.

Sobre autores

S. Ivanov

Moscow Aviation Institute (National State University)

Autor responsável pela correspondência
Email: sergeyivanov89@mail.ru
Rússia, Moscow

A. Kibzun

Moscow Aviation Institute (National State University)

Email: sergeyivanov89@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018