On the Convergence of Sample Approximations for Stochastic Programming Problems with Probabilistic Criteria
- Авторы: Ivanov S.V.1, Kibzun A.I.1
-
Учреждения:
- Moscow Aviation Institute (National State University)
- Выпуск: Том 79, № 2 (2018)
- Страницы: 216-228
- Раздел: Topical Issue
- URL: https://ogarev-online.ru/0005-1179/article/view/150812
- DOI: https://doi.org/10.1134/S0005117918020029
- ID: 150812
Цитировать
Аннотация
We consider stochastic programming problems with probabilistic and quantile criteria. We describe a method for approximating these problems with a sample of realizations for random parameters. When we use this method, criterial functions of the problems are replaced with their sample estimates. We show the hypoconvergence of sample probability functions to its exact value that guarantees the convergence of approximations for the probability function maximization problem on a compact set with respect to both the value of the criterial function and the optimization strategy. We prove a theorem on the convergence of approximation for the quantile function minimization problem with respect to the value of the criterial function and the optimization strategy.
Ключевые слова
Об авторах
S. Ivanov
Moscow Aviation Institute (National State University)
Автор, ответственный за переписку.
Email: sergeyivanov89@mail.ru
Россия, Moscow
A. Kibzun
Moscow Aviation Institute (National State University)
Email: sergeyivanov89@mail.ru
Россия, Moscow
Дополнительные файлы
