Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model
- Autores: Goryainova E.R.1, Botvinkin E.A.2
-
Afiliações:
- National Research University Higher School of Economics
- SJC “Europlan,”
- Edição: Volume 78, Nº 10 (2017)
- Páginas: 1819-1836
- Seção: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150700
- DOI: https://doi.org/10.1134/S000511791710006X
- ID: 150700
Citar
Resumo
We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the accuracy of the considered estimates for the most popular probability distributions of noise in a regression model. For different noise distributions, we analytically compute asymptotic efficiencies of LS-, LAD-, R-, M-, S-, and LTS- estimates. We give recommendations for practical applications of these methods for different noise distributions in the model. We show examples on real datasets that support the advantages of robust estimates.
Sobre autores
E. Goryainova
National Research University Higher School of Economics
Autor responsável pela correspondência
Email: el-goryainova@mail.ru
Rússia, Moscow
E. Botvinkin
SJC “Europlan,”
Email: el-goryainova@mail.ru
Rússia, Moscow
Arquivos suplementares
