Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model
- 作者: Goryainova E.R.1, Botvinkin E.A.2
-
隶属关系:
- National Research University Higher School of Economics
- SJC “Europlan,”
- 期: 卷 78, 编号 10 (2017)
- 页面: 1819-1836
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150700
- DOI: https://doi.org/10.1134/S000511791710006X
- ID: 150700
如何引用文章
详细
We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the accuracy of the considered estimates for the most popular probability distributions of noise in a regression model. For different noise distributions, we analytically compute asymptotic efficiencies of LS-, LAD-, R-, M-, S-, and LTS- estimates. We give recommendations for practical applications of these methods for different noise distributions in the model. We show examples on real datasets that support the advantages of robust estimates.
作者简介
E. Goryainova
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: el-goryainova@mail.ru
俄罗斯联邦, Moscow
E. Botvinkin
SJC “Europlan,”
Email: el-goryainova@mail.ru
俄罗斯联邦, Moscow
补充文件
