Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the accuracy of the considered estimates for the most popular probability distributions of noise in a regression model. For different noise distributions, we analytically compute asymptotic efficiencies of LS-, LAD-, R-, M-, S-, and LTS- estimates. We give recommendations for practical applications of these methods for different noise distributions in the model. We show examples on real datasets that support the advantages of robust estimates.

作者简介

E. Goryainova

National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: el-goryainova@mail.ru
俄罗斯联邦, Moscow

E. Botvinkin

SJC “Europlan,”

Email: el-goryainova@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017