On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ω


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the classes of functions

\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)

where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.

About the authors

S. B. Vakarchuk

Nobel University

Author for correspondence.
Email: sbvakarchuk@gmail.com
Ukraine, Dnipro, 49000

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.