On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωℳ
- Authors: Vakarchuk S.B.1
-
Affiliations:
- Nobel University
- Issue: Vol 106, No 1-2 (2019)
- Pages: 191-202
- Section: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151821
- DOI: https://doi.org/10.1134/S000143461907023X
- ID: 151821
Cite item
Abstract
For the classes of functions
\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)![]()
where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
About the authors
S. B. Vakarchuk
Nobel University
Author for correspondence.
Email: sbvakarchuk@gmail.com
Ukraine, Dnipro, 49000
Supplementary files
