On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωℳ
- 作者: Vakarchuk S.B.1
-
隶属关系:
- Nobel University
- 期: 卷 106, 编号 1-2 (2019)
- 页面: 191-202
- 栏目: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151821
- DOI: https://doi.org/10.1134/S000143461907023X
- ID: 151821
如何引用文章
详细
For the classes of functions
\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)![]()
where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
补充文件
