On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ω


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the classes of functions

\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)

where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.

作者简介

S. Vakarchuk

Nobel University

编辑信件的主要联系方式.
Email: sbvakarchuk@gmail.com
乌克兰, Dnipro, 49000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019