On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωℳ
- Авторлар: Vakarchuk S.B.1
-
Мекемелер:
- Nobel University
- Шығарылым: Том 106, № 1-2 (2019)
- Беттер: 191-202
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151821
- DOI: https://doi.org/10.1134/S000143461907023X
- ID: 151821
Дәйексөз келтіру
Аннотация
For the classes of functions
\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)![]()
where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Авторлар туралы
S. Vakarchuk
Nobel University
Хат алмасуға жауапты Автор.
Email: sbvakarchuk@gmail.com
Украина, Dnipro, 49000
Қосымша файлдар
