On Estimates in L2(ℝ) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωℳ
- Autores: Vakarchuk S.B.1
-
Afiliações:
- Nobel University
- Edição: Volume 106, Nº 1-2 (2019)
- Páginas: 191-202
- Seção: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151821
- DOI: https://doi.org/10.1134/S000143461907023X
- ID: 151821
Citar
Resumo
For the classes of functions
\({W^r}\left( {{\omega _{\cal M}},\;{\rm{\Phi }}} \right)\;: = \left\{ {f\; \in \;L_2^r\left(\mathbb{R}\right)\;:\;{\omega _{\cal M}}\left( {{f^{\left( r \right)}},\;t} \right)\; \le \;{\rm{\Phi }}\left( t \right)\;\forall \;t\; \in \;\left( {0,\;\infty } \right)} \right\},\)![]()
where Φ is a majorant and r ∈ ℤ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(ℝ) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Sobre autores
S. Vakarchuk
Nobel University
Autor responsável pela correspondência
Email: sbvakarchuk@gmail.com
Ucrânia, Dnipro, 49000
Arquivos suplementares
