99mTc-MIBI washout rate as a marker of myocardial mitochondrial dysfunction: A systematic review and meta-analysis

Cover Image

Cite item

Abstract

BACKGROUND: This review outlines the features of the pharmacokinetics of the perfusion radiopharmaceutical 99mTc-MIBI, which allows the assessment of myocardial mitochondrial dysfunction, and shows the main clinical applications of the phenomenon of increased 99mTc-MIBI washout rate.

AIM: To systematize the data of fundamental (experimental) and clinical studies evaluating and estimating mitochondrial dysfunction according to myocardial perfusion scintigraphy data and perform meta-analysis of clinical studies in this field.

MATERIALS AND METHODS: PubMed, Scopus, Google Scholar, and eLibrary databases were searched until mid-2023. The following keywords, their combinations, and Russian-language counterparts were used: mitochondrial dysfunction, 99mTc-MIBI, 99mTc-Tetrofosmin, myocardial perfusion scintigraphy, reverse redistribution, washout, and washout rate. In the meta-analysis, a random-effects model was used to calculate the mean difference estimate.

RESULTS: Forty articles were selected for systematic analysis: 13 were experimental, 24 were original clinical papers, 2 were clinical cases, and 1 was a review. Six studies using a case–control design were selected for the meta-analyses. The total number of patients in the systematic review and meta-analysis were 551 and 196, respectively. In the analysis of the literature, the severity of the reverse redistribution phenomenon and 99mTc-MIBI washout rate correlated with mitochondrial and myocardial microstructure, left ventricular contractility and hemodynamics, natriuretic peptide levels, exercise tolerance, coronary atherosclerosis severity, myocardial oxidative metabolism, and risk of cardiovascular events. The meta-analysis showed that the washout rate was statistically significantly accelerated in individuals with cardiac pathologies, relative to controls (mean difference score, 9.5771 [95%]; confidence interval, 6.6001–12.5540; z=6.3053, p <0.0001).

CONCLUSION: The assessment of mitochondrial function by 99mTc-MIBI washout evaluation may provide additional insights into the functional status of cardiac muscles.

About the authors

Marina O. Gulya

Cardiology Research Institute, Tomsk National Research Medical Center

Email: mgulyatomsk@mail.ru
ORCID iD: 0000-0001-5689-9754
SPIN-code: 3064-3773
Scopus Author ID: 56700201800
ResearcherId: M-1017-2016

MD, Cand. Sci. (Med.)

Russian Federation, Tomsk

Konstantin V. Zavadovsky

Cardiology Research Institute, Tomsk National Research Medical Center

Author for correspondence.
Email: konstzav@gmail.com
ORCID iD: 0000-0002-1513-8614
SPIN-code: 5081-3495
ResearcherId: F-9990-2014

MD, Dr. Sci. (Med.)

Russian Federation, Tomsk

References

  1. Vaduganathan M, Mensah GA, Turco JV, et al. The Global Burden of Cardiovascular Diseases and Risk. Journal of the American College of Cardiology. 2022;80(25):2361–2371. doi: 10.1016/j.jacc.2022.11.005
  2. Murray AJ, Edwards LM, Clarke K. Mitochondria and heart failure. Current Opinion in Clinical Nutrition and Metabolic Care. 2007;10(6):704–711. doi: 10.1097/MCO.0b013e3282f0ecbe. Erratum in: Current Opinion in Clinical Nutrition and Metabolic Care. 2011;14(1):111.
  3. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. The Journal of Physiology. 2004;555(1):1–13. doi: 10.1113/jphysiol.2003.055095
  4. Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. Journal of Molecular and Cellular Cardiology. 2012;52(1):48–61. doi: 10.1016/j.yjmcc.2011.08.030
  5. Schuster A, Morton G, Chiribiri A, et al. Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. Journal of the American College of Cardiology. 2012;59(4):359–370. doi: 10.1016/j.jacc.2011.08.076
  6. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339(1):b2700. doi: 10.1136/bmj.b2700
  7. Boschi A, Uccelli L, Marvelli L, et al. Technetium-99m Radiopharmaceuticals for Ideal Myocardial Perfusion Imaging: Lost and Found Opportunities. Molecules. 2022;27(4):1188. doi: 10.3390/molecules27041188
  8. Zavadovsky KV, Vesnina ZhV, Anashbaev ZhZh, et al. Current status of nuclear cardiology in the Russian Federation. Russian Journal of Cardiology. 2022;27(12):105–114. (In Russ). doi: 10.15829/1560-4071-2022-5134
  9. Piwnica-Worms D, Kronauge JF, Chiu ML. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. Journal of nuclear medicine. 1991;32(10):1992–1999.
  10. Backus M, Piwnica-Worms D, Hockett D, et al. Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential. American Journal of Physiology-Cell Physiology. 1993;265(1):C178–C187. doi: 10.1152/ajpcell.1993.265.1.C178
  11. Crane P, Laliberté R, Heminway S, et al. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. European Journal of Nuclear Medicine. 1993;Vol. 20(1):20–25. doi: 10.1007/BF02261241
  12. Fukushima K, Momose M, Kondo C, et al. Myocardial kinetics of (201)Thallium, (99m)Tc-tetrofosmin, and (99m)Tc-sestamibi in an acute ischemia-reperfusion model using isolated rat heart. Annals of Nuclear Medicine. 2007;21(5):267–273. doi: 10.1007/s12149-007-0019-x
  13. Masuda A, Yoshinaga K, Naya M, et al. Accelerated (99m)Tc-sestamibi clearance associated with mitochondrial dysfunction and regional left ventricular dysfunction in reperfused myocardium in patients with acute coronary syndrome. EJNMMI Research. 2016;6(1):41. doi: 10.1186/s13550-016-0196-5
  14. Hayashi D, Ohshima S, Isobe S, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. Journal of the American College of Cardiology. 2013;61(19):2007–2017. doi: 10.1016/j.jacc.2013.01.074
  15. Othman MOM, Moustafa HM, El-Ghany MMA, et al. The value of myocardial MIBI washout rate in risk stratification of coronary artery disease. Egyptian Journal of Radiology and Nuclear Medicine. 2021;52(1). doi: 10.1186/s43055-020-00382-0
  16. Henzlova MJ, Duvall WL, Einstein AJ, et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. Journal of Nuclear Cardiology. 2016;23(3):606–639. doi: 10.1007/s12350-015-0387-x. Erratum in: Journal of Nuclear Cardiology. 2016;23(3):640–642.
  17. Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. Journal of Nuclear Cardiology. 2018;25(5):1784–1846. doi: 10.1007/s12350-018-1283-y
  18. Du B, Li N, Li X, et al. Myocardial washout rate of resting 99mTc-Sestamibi (MIBI) uptake to differentiate between normal perfusion and severe three-vessel coronary artery disease documented with invasive coronary angiography. Annals of Nuclear Medicine. 2014;28(3):285–292. doi: 10.1007/s12149-013-0803-8
  19. Ikawa M, Kawai Y, Arakawa K, et al. Evaluation of respiratory chain failure in mitochondrial cardiomyopathy by assessments of 99mTc-MIBI washout and 123I-BMIPP/99mTc-MIBI mismatch. Mitochondrion. 2007;7(1-2):164–170. doi: 10.1016/j.mito.2006.11.008
  20. Takeishi Y, Sukekawa H, Fujiwara S, et al. Reverse redistribution of technetium-99m-sestamibi following direct PTCA in acute myocardial infarction. Journal of nuclear medicine. 1996;37(8):1289–1294.
  21. Fujiwara S, Takeishi Y, Hirono O, et al. Reverse redistribution of 99m Tc-sestamibi after direct percutaneous transluminal coronary angioplasty in acute myocardial infarction: relationship with wall motion and functional response to dobutamine stimulation. Nuclear Medicine Communications. 2001;22(11):1223–1230. doi: 10.1097/00006231-200111000-00009
  22. Ono S, Yamaguchi H, Takayama S, et al. [Rest delayed images on 99mTc-MIBI myocardial SPECT as a noninvasive screen for the diagnosis of vasospastic angina pectoris]. Kaku Igaku. 2002;39(2):117–124. (In Japanese).
  23. Chen Y, Pang ZK, Wang J, et al. Serial Changes of 99mTc-Sestamibi Washout Due to Coronary Spasm Captured by Dynamic Myocardial Perfusion Imaging With Cardiac Dedicated CZT-SPECT: a Case Report. Circulation: Cardiovascular Imaging. 2022;15(3). doi: 10.1161/CIRCIMAGING.121.013687
  24. Kato T, Noda T, Tanaka S, et al. Impact of accelerated washout of Technetium-99m-sestamibi on exercise tolerance in patients with acute coronary syndrome: single-center experience. Heart and Vessels. 2022;37(9):1506–1515. doi: 10.1007/s00380-022-02058-3
  25. Bengel FM, Permanetter B, Ungerer M, et al. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate--comparison between the normal and failing human heart. European Journal of Nuclear Medicine and Molecular Imaging. 2000;27(3):319–326. doi: 10.1007/s002590050040
  26. Hoff J, Burchert W, Börner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. Journal of nuclear medicine. 2001;42(8):1174–1182.
  27. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. Journal of Nuclear Cardiology. 2022;29(6):3137–3151. doi: 10.1007/s12350-021-02620-y
  28. Wu IC, Ohsawa I, Fuku N, et al. Metabolic analysis of 13C-labeled pyruvate for noninvasive assessment of mitochondrial function. Annals of the New York Academy of Sciences. 2010;1201(1):111–120. doi: 10.1111/j.1749-6632.2010.05636.x
  29. Zavadovsky KV, Mishkina AI, Mochula AV, et al. The method for correction of motion artefacts to improve myocardial perfusion imaging. Russian Electronic Journal of Radiology. 2017;7(2):56–64. (In Russ). doi: 10.21569/2222-7415-2017-7-2-56-64
  30. Zavadovsky KV, Mochula AV, Vrublevsky AV, et al. Role of stress in dynamic single-photon emission computed tomography with myocardial perfusion reserve determination in assessing the severity of coronary artery stenosis. Russian Journal of Cardiology. 2019;24(12):40–46. (In Russ). doi: 10.15829/1560-4071-2019-12-40-46
  31. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. Journal of Nuclear Cardiology. 2022;29(3):1051–1063. doi: 10.1007/s12350-020-02395-8
  32. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425. Erratum in: European Heart Journal. 2020;41(44):4242.
  33. Kumita S, Seino Y, Cho K, et al. Assessment of myocardial washout of Tc-99m-sestamibi in patients with chronic heart failure: comparison with normal control. Annals of Nuclear Medicine. 2002;16(4):237–242. doi: 10.1007/BF03000101
  34. Sugiura T, Takase H, Toriyama T, et al. Usefulness of Tc-99m methoxyisobutylisonitrile scintigraphy for evaluating congestive heart failure. Journal of Nuclear Cardiology. 2006;13(1):64–68. doi: 10.1016/j.nuclcard.2005.10.003
  35. Matsuo S, Nakae I, Tsutamoto T, et al. A novel clinical indicator using Tc-99m sestamibi for evaluating cardiac mitochondrial function in patients with cardiomyopathies. Journal of Nuclear Cardiology. 2007;14(2):215–220. doi: 10.1016/j.nuclcard.2006.10.022
  36. Yamanaka M, Takao S, Otsuka H, et al. The Utility of a Combination of 99mTc-MIBI Washout Imaging and Cardiac Magnetic Resonance Imaging in the Evaluation of Cardiomyopathy. Annals of Nuclear Cardiology. 2021;7(1):8–16. doi: 10.17996/anc.21-00124
  37. Takehana K, Maeba H, Ueyama T, et al. Direct correlation between regional systolic function and regional washout rate of ⁹⁹mTc-sestamibi in patients with idiopathic dilated cardiomyopathy. Nuclear Medicine Communications. 2011;32(12):1174–1178. doi: 10.1097/MNM.0b013e32834b60be
  38. Shiroodi MK, Shafiei B, Baharfard N, et al. 99mTc-MIBI washout as a complementary factor in the evaluation of idiopathic dilated cardiomyopathy (IDCM) using myocardial perfusion imaging. The International Journal of Cardiovascular Imaging. 2012;28(1):211–217. doi: 10.1007/s10554-010-9770-5
  39. Morishita S, Kondo Y, Nomura M, et al. Impaired retention of technetium-99m tetrofosmin in hypertrophic cardiomyopathy. The American Journal of Cardiology. 2001;87(6):743–747. doi: 10.1016/s0002-9149(00)01494-6
  40. Thet-Thet-Lwin, Takeda T, Wu J, et al. Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI. European Journal of Nuclear Medicine and Molecular Imaging. 2003;30(7):966–973. doi: 10.1007/s00259-003-1163-8
  41. Sun M, Li Y, Li N, et al. Preliminary clinical investigation of 99mTc-methoxyisobutylisonitrile washout rate in hypertrophic cardiomyopathy. Nuclear Medicine Communications. 2008;29(8):686–689. doi: 10.1097/MNM.0b013e3283009f36
  42. Isobe S, Ohshima S, Unno K, et al. Relation of 99mTc-sestamibi washout with myocardial properties in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology. 2010;17(6):1082–1090. doi: 10.1007/s12350-010-9266-7
  43. Sarai M, Motoyama S, Kato Y, et al. (99m)Tc-MIBI Washout Rate to Evaluate the Effects of Steroid Therapy in Cardiac Sarcoidosis. Asia Oceania journal of nuclear medicine & biology. 2013;1(2):4–9.
  44. Suzuki M, Izawa Y, Fujita H, et al. Efficacy of myocardial washout of 99mTc-MIBI/Tetrofosmin for the evaluation of inflammation in patients with cardiac sarcoidosis: comparison with 18F-fluorodeoxyglucose positron emission tomography findings. Annals of Nuclear Medicine. 2022;36(6):544–552. doi: 10.1007/s12149-022-01735-7
  45. Zavadovsky KV, Gulya MO, Lishmanov YB, Lebedev DI. Perfusion and metabolic scintigraphy with (123)I-BMIPP in prognosis of cardiac resynchronization therapy in patients with dilated cardiomyopathy. Annals of Nuclear Medicine. 2016;30(5):325–333. doi: 10.1007/s12149-016-1064-0
  46. Matsuo S, Nakajima K, Kinuya S, et al. Cardiac scintigraphic findings of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: A case report. Experimental and clinical cardiology. 2008;13(2):93–95.
  47. Migunova EV, Nefedova GA, Kudryashova NE, et al. Evaluation of mitochondrial dysfunction of a transplanted heart with radionuclide method (clinical observations). Russian Electronic Journal of Radiology. 2020;10(3):156–164. (In Russ). doi: 10.21569/2222-7415-2020-10-3-156-164
  48. Safee ZM, Baark F, Waters ECT, et al. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected 99mTc sestamibi SPECT. Scientific Reports. 2019;9(1):216. doi: 10.1038/s41598-018-36721-5
  49. Mochula AV, Kop’eva KV, Maltseva AN, et al. Coronary flow reserve in patients with heart failure with preserved ejection fraction. Russian Journal of Cardiology. 2022;27(2):44–52. (In Russ). doi: 10.15829/1560-4071-2022-4743

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic depiction of the mechanism of the accumulation of various diagnostic agents in the cell and intercellular space. 201/199Tl: thallium-201 or thallium-199; its uptake is determined by membrane integrity and normal functioning of the Na+/K+ pump. 82Rb: rubidium-82; its uptake is also determined by the Na+/K+ pump. 99mTc-MIBI/TF-based tracers: lipophilic cations that freely pass through the mitochondrial membrane and are retained because of the transmembrane potential. Dobutamine stimulates β1 and β2 adrenergic receptors, increasing the intracellular calcium concentration and inotropic function of the heart. 18F-FDG: fluorodeoxyglucose accumulates in the cell via the glucose transporter protein. 13NH3: ammonium is accumulated via passive diffusion and active transport of the Na+/K+ pump. H215O: oxygen-15 labeled water readily diffuses into the cell, forming an equilibrium between the extracellular and intracellular pools. Gadolinium is an extracellular diagnostic agent that is retained in the intercellular space.

Download (276KB)
3. Fig. 2. An example of the absence and presence of 99mTc-MIBI reverse redistribution. Patient 1: female, 56 years old, CAD (grade II stable angina) secondary to nonobstructive coronary atherosclerosis; CHF, NYHA class II; LV ejection fraction, 64%; end-systolic volume, 42 mL; end-diastolic volume, 117 mL. Delayed imaging (240 min) revealed no perfusion defects. Patient 2: male, 58 years old; CAD (grade II stable angina); anterior descending artery stenosis, 75%; right coronary artery stenosis, 70%; CHF, NYHA class II; LV ejection fraction, 65%; end-systolic volume, 39 mL; end-diastolic volume, 112 mL. Delayed imaging (240 min) revealed perfusion defects (arrows) that were not detected during early imaging (60 min). Images were obtained at the Research Institute of Cardiology, Tomsk National Research Medical Center.

Download (243KB)
4. Fig. 3. Meta-analysis results (k=6 studies). Mean differences ranged from 5.3000 to 14.9900; most ratings were positive (100%). The mean difference estimate based on the random effects model was 9.5771 (95% confidence interval: 6.6001–12.5540); the mean score was significantly different from zero (z=6.3053; p<0.0001).

Download (229KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».