99m锝-甲氧基异丁基异腈(99mTc-MIBI)洗脱率作为心肌线粒体功能障碍的标志物;系统综述和荟萃分析
- 作者: Gulya M.O.1, Zavadovsky K.V.1
-
隶属关系:
- Cardiology Research Institute, Tomsk National Research Medical Center
- 期: 卷 4, 编号 4 (2023)
- 页面: 509-528
- 栏目: 系统评价
- URL: https://ogarev-online.ru/DD/article/view/262960
- DOI: https://doi.org/10.17816/DD568668
- ID: 262960
如何引用文章
详细
论证。本综述概述了灌注放射性药物99mTc-MIBI的药代动力学特征。这些特征可被用于评估心肌线粒体功能障碍。综述还说明了该指标加速洗脱现象的临床应用要点。
该研究的目的是系统整理关于通过心肌灌注闪烁成像研究和评估线粒体功能障碍领域的基 础(实验)和临床研究数据;对该领域的临床研究进行荟萃分析。
材料与方法。检索是在Pubmed、Scopus、Google Scholar和eLibrary数据库中进行的,检索期截至2023年年中。使用的关键词及其组合和英文对应词包括:线粒体功能障碍、99mTc-MIBI、 99m锝-替曲膦、心肌灌注闪烁成像、反向再分布、洗脱、洗脱率。在进行荟萃分析时,采用了随机效应模型来计算平均差异估计值。
结果。我们一共选中了40篇文章,以进行系统分析:其中13篇为实验性文章,24篇为临床医学论文,2篇为临床病例,1篇为综述。我们一共选中了6项研究,以进行病例对照模型的荟萃分析。系统综述中的患者总人数为551人;荟萃分析中的患者人数为196人。文献分析显示了,反向再分布现象的严重程度和99mTc-MIBI洗脱率与线粒体和心肌微结构、左室收缩力和血流动力、利尿钠肽水平、运动耐量、冠状动脉粥样硬化严重程度、心肌氧化代谢和心血管事件风险水平相关。荟萃分析表明了,与对照组相比,心脏病变受试者的洗脱率在统计学上显著较高。平均差异估计值为9.5771(95%置信区间:6.6001至12.5540;z=6.3053;p<0.0001)。
结论。通过99mTc-MIBI洗脱评估对线粒体功能进行评估,可为了解心肌功能状态提供更多信息。
作者简介
Marina O. Gulya
Cardiology Research Institute, Tomsk National Research Medical Center
Email: mgulyatomsk@mail.ru
ORCID iD: 0000-0001-5689-9754
SPIN 代码: 3064-3773
Scopus 作者 ID: 56700201800
Researcher ID: M-1017-2016
MD, Cand. Sci. (Med.)
俄罗斯联邦, TomskKonstantin V. Zavadovsky
Cardiology Research Institute, Tomsk National Research Medical Center
编辑信件的主要联系方式.
Email: konstzav@gmail.com
ORCID iD: 0000-0002-1513-8614
SPIN 代码: 5081-3495
Researcher ID: F-9990-2014
MD, Dr. Sci. (Med.)
俄罗斯联邦, Tomsk参考
- Vaduganathan M, Mensah GA, Turco JV, et al. The Global Burden of Cardiovascular Diseases and Risk. Journal of the American College of Cardiology. 2022;80(25):2361–2371. doi: 10.1016/j.jacc.2022.11.005
- Murray AJ, Edwards LM, Clarke K. Mitochondria and heart failure. Current Opinion in Clinical Nutrition and Metabolic Care. 2007;10(6):704–711. doi: 10.1097/MCO.0b013e3282f0ecbe. Erratum in: Current Opinion in Clinical Nutrition and Metabolic Care. 2011;14(1):111.
- Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. The Journal of Physiology. 2004;555(1):1–13. doi: 10.1113/jphysiol.2003.055095
- Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. Journal of Molecular and Cellular Cardiology. 2012;52(1):48–61. doi: 10.1016/j.yjmcc.2011.08.030
- Schuster A, Morton G, Chiribiri A, et al. Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. Journal of the American College of Cardiology. 2012;59(4):359–370. doi: 10.1016/j.jacc.2011.08.076
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339(1):b2700. doi: 10.1136/bmj.b2700
- Boschi A, Uccelli L, Marvelli L, et al. Technetium-99m Radiopharmaceuticals for Ideal Myocardial Perfusion Imaging: Lost and Found Opportunities. Molecules. 2022;27(4):1188. doi: 10.3390/molecules27041188
- Zavadovsky KV, Vesnina ZhV, Anashbaev ZhZh, et al. Current status of nuclear cardiology in the Russian Federation. Russian Journal of Cardiology. 2022;27(12):105–114. (In Russ). doi: 10.15829/1560-4071-2022-5134
- Piwnica-Worms D, Kronauge JF, Chiu ML. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. Journal of nuclear medicine. 1991;32(10):1992–1999.
- Backus M, Piwnica-Worms D, Hockett D, et al. Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential. American Journal of Physiology-Cell Physiology. 1993;265(1):C178–C187. doi: 10.1152/ajpcell.1993.265.1.C178
- Crane P, Laliberté R, Heminway S, et al. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. European Journal of Nuclear Medicine. 1993;Vol. 20(1):20–25. doi: 10.1007/BF02261241
- Fukushima K, Momose M, Kondo C, et al. Myocardial kinetics of (201)Thallium, (99m)Tc-tetrofosmin, and (99m)Tc-sestamibi in an acute ischemia-reperfusion model using isolated rat heart. Annals of Nuclear Medicine. 2007;21(5):267–273. doi: 10.1007/s12149-007-0019-x
- Masuda A, Yoshinaga K, Naya M, et al. Accelerated (99m)Tc-sestamibi clearance associated with mitochondrial dysfunction and regional left ventricular dysfunction in reperfused myocardium in patients with acute coronary syndrome. EJNMMI Research. 2016;6(1):41. doi: 10.1186/s13550-016-0196-5
- Hayashi D, Ohshima S, Isobe S, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. Journal of the American College of Cardiology. 2013;61(19):2007–2017. doi: 10.1016/j.jacc.2013.01.074
- Othman MOM, Moustafa HM, El-Ghany MMA, et al. The value of myocardial MIBI washout rate in risk stratification of coronary artery disease. Egyptian Journal of Radiology and Nuclear Medicine. 2021;52(1). doi: 10.1186/s43055-020-00382-0
- Henzlova MJ, Duvall WL, Einstein AJ, et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. Journal of Nuclear Cardiology. 2016;23(3):606–639. doi: 10.1007/s12350-015-0387-x. Erratum in: Journal of Nuclear Cardiology. 2016;23(3):640–642.
- Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. Journal of Nuclear Cardiology. 2018;25(5):1784–1846. doi: 10.1007/s12350-018-1283-y
- Du B, Li N, Li X, et al. Myocardial washout rate of resting 99mTc-Sestamibi (MIBI) uptake to differentiate between normal perfusion and severe three-vessel coronary artery disease documented with invasive coronary angiography. Annals of Nuclear Medicine. 2014;28(3):285–292. doi: 10.1007/s12149-013-0803-8
- Ikawa M, Kawai Y, Arakawa K, et al. Evaluation of respiratory chain failure in mitochondrial cardiomyopathy by assessments of 99mTc-MIBI washout and 123I-BMIPP/99mTc-MIBI mismatch. Mitochondrion. 2007;7(1-2):164–170. doi: 10.1016/j.mito.2006.11.008
- Takeishi Y, Sukekawa H, Fujiwara S, et al. Reverse redistribution of technetium-99m-sestamibi following direct PTCA in acute myocardial infarction. Journal of nuclear medicine. 1996;37(8):1289–1294.
- Fujiwara S, Takeishi Y, Hirono O, et al. Reverse redistribution of 99m Tc-sestamibi after direct percutaneous transluminal coronary angioplasty in acute myocardial infarction: relationship with wall motion and functional response to dobutamine stimulation. Nuclear Medicine Communications. 2001;22(11):1223–1230. doi: 10.1097/00006231-200111000-00009
- Ono S, Yamaguchi H, Takayama S, et al. [Rest delayed images on 99mTc-MIBI myocardial SPECT as a noninvasive screen for the diagnosis of vasospastic angina pectoris]. Kaku Igaku. 2002;39(2):117–124. (In Japanese).
- Chen Y, Pang ZK, Wang J, et al. Serial Changes of 99mTc-Sestamibi Washout Due to Coronary Spasm Captured by Dynamic Myocardial Perfusion Imaging With Cardiac Dedicated CZT-SPECT: a Case Report. Circulation: Cardiovascular Imaging. 2022;15(3). doi: 10.1161/CIRCIMAGING.121.013687
- Kato T, Noda T, Tanaka S, et al. Impact of accelerated washout of Technetium-99m-sestamibi on exercise tolerance in patients with acute coronary syndrome: single-center experience. Heart and Vessels. 2022;37(9):1506–1515. doi: 10.1007/s00380-022-02058-3
- Bengel FM, Permanetter B, Ungerer M, et al. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate--comparison between the normal and failing human heart. European Journal of Nuclear Medicine and Molecular Imaging. 2000;27(3):319–326. doi: 10.1007/s002590050040
- Hoff J, Burchert W, Börner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. Journal of nuclear medicine. 2001;42(8):1174–1182.
- Zavadovsky KV, Mochula AV, Maltseva AN, et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. Journal of Nuclear Cardiology. 2022;29(6):3137–3151. doi: 10.1007/s12350-021-02620-y
- Wu IC, Ohsawa I, Fuku N, et al. Metabolic analysis of 13C-labeled pyruvate for noninvasive assessment of mitochondrial function. Annals of the New York Academy of Sciences. 2010;1201(1):111–120. doi: 10.1111/j.1749-6632.2010.05636.x
- Zavadovsky KV, Mishkina AI, Mochula AV, et al. The method for correction of motion artefacts to improve myocardial perfusion imaging. Russian Electronic Journal of Radiology. 2017;7(2):56–64. (In Russ). doi: 10.21569/2222-7415-2017-7-2-56-64
- Zavadovsky KV, Mochula AV, Vrublevsky AV, et al. Role of stress in dynamic single-photon emission computed tomography with myocardial perfusion reserve determination in assessing the severity of coronary artery stenosis. Russian Journal of Cardiology. 2019;24(12):40–46. (In Russ). doi: 10.15829/1560-4071-2019-12-40-46
- Zavadovsky KV, Mochula AV, Maltseva AN, et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. Journal of Nuclear Cardiology. 2022;29(3):1051–1063. doi: 10.1007/s12350-020-02395-8
- Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425. Erratum in: European Heart Journal. 2020;41(44):4242.
- Kumita S, Seino Y, Cho K, et al. Assessment of myocardial washout of Tc-99m-sestamibi in patients with chronic heart failure: comparison with normal control. Annals of Nuclear Medicine. 2002;16(4):237–242. doi: 10.1007/BF03000101
- Sugiura T, Takase H, Toriyama T, et al. Usefulness of Tc-99m methoxyisobutylisonitrile scintigraphy for evaluating congestive heart failure. Journal of Nuclear Cardiology. 2006;13(1):64–68. doi: 10.1016/j.nuclcard.2005.10.003
- Matsuo S, Nakae I, Tsutamoto T, et al. A novel clinical indicator using Tc-99m sestamibi for evaluating cardiac mitochondrial function in patients with cardiomyopathies. Journal of Nuclear Cardiology. 2007;14(2):215–220. doi: 10.1016/j.nuclcard.2006.10.022
- Yamanaka M, Takao S, Otsuka H, et al. The Utility of a Combination of 99mTc-MIBI Washout Imaging and Cardiac Magnetic Resonance Imaging in the Evaluation of Cardiomyopathy. Annals of Nuclear Cardiology. 2021;7(1):8–16. doi: 10.17996/anc.21-00124
- Takehana K, Maeba H, Ueyama T, et al. Direct correlation between regional systolic function and regional washout rate of ⁹⁹mTc-sestamibi in patients with idiopathic dilated cardiomyopathy. Nuclear Medicine Communications. 2011;32(12):1174–1178. doi: 10.1097/MNM.0b013e32834b60be
- Shiroodi MK, Shafiei B, Baharfard N, et al. 99mTc-MIBI washout as a complementary factor in the evaluation of idiopathic dilated cardiomyopathy (IDCM) using myocardial perfusion imaging. The International Journal of Cardiovascular Imaging. 2012;28(1):211–217. doi: 10.1007/s10554-010-9770-5
- Morishita S, Kondo Y, Nomura M, et al. Impaired retention of technetium-99m tetrofosmin in hypertrophic cardiomyopathy. The American Journal of Cardiology. 2001;87(6):743–747. doi: 10.1016/s0002-9149(00)01494-6
- Thet-Thet-Lwin, Takeda T, Wu J, et al. Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI. European Journal of Nuclear Medicine and Molecular Imaging. 2003;30(7):966–973. doi: 10.1007/s00259-003-1163-8
- Sun M, Li Y, Li N, et al. Preliminary clinical investigation of 99mTc-methoxyisobutylisonitrile washout rate in hypertrophic cardiomyopathy. Nuclear Medicine Communications. 2008;29(8):686–689. doi: 10.1097/MNM.0b013e3283009f36
- Isobe S, Ohshima S, Unno K, et al. Relation of 99mTc-sestamibi washout with myocardial properties in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology. 2010;17(6):1082–1090. doi: 10.1007/s12350-010-9266-7
- Sarai M, Motoyama S, Kato Y, et al. (99m)Tc-MIBI Washout Rate to Evaluate the Effects of Steroid Therapy in Cardiac Sarcoidosis. Asia Oceania journal of nuclear medicine & biology. 2013;1(2):4–9.
- Suzuki M, Izawa Y, Fujita H, et al. Efficacy of myocardial washout of 99mTc-MIBI/Tetrofosmin for the evaluation of inflammation in patients with cardiac sarcoidosis: comparison with 18F-fluorodeoxyglucose positron emission tomography findings. Annals of Nuclear Medicine. 2022;36(6):544–552. doi: 10.1007/s12149-022-01735-7
- Zavadovsky KV, Gulya MO, Lishmanov YB, Lebedev DI. Perfusion and metabolic scintigraphy with (123)I-BMIPP in prognosis of cardiac resynchronization therapy in patients with dilated cardiomyopathy. Annals of Nuclear Medicine. 2016;30(5):325–333. doi: 10.1007/s12149-016-1064-0
- Matsuo S, Nakajima K, Kinuya S, et al. Cardiac scintigraphic findings of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: A case report. Experimental and clinical cardiology. 2008;13(2):93–95.
- Migunova EV, Nefedova GA, Kudryashova NE, et al. Evaluation of mitochondrial dysfunction of a transplanted heart with radionuclide method (clinical observations). Russian Electronic Journal of Radiology. 2020;10(3):156–164. (In Russ). doi: 10.21569/2222-7415-2020-10-3-156-164
- Safee ZM, Baark F, Waters ECT, et al. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected 99mTc sestamibi SPECT. Scientific Reports. 2019;9(1):216. doi: 10.1038/s41598-018-36721-5
- Mochula AV, Kop’eva KV, Maltseva AN, et al. Coronary flow reserve in patients with heart failure with preserved ejection fraction. Russian Journal of Cardiology. 2022;27(2):44–52. (In Russ). doi: 10.15829/1560-4071-2022-4743
补充文件
