A model for assessing the economic efficiency of hybrid stream data processing in high-load systems: a methodology for reducing operational latency
- Authors: Rakhmatullin T.G1
-
Affiliations:
- Mytona, St. Petersburg
- Issue: Vol 4, No 6 (2025)
- Pages: 55-64
- Section: Articles
- URL: https://ogarev-online.ru/2949-4648/article/view/378796
- ID: 378796
Cite item
Abstract
the purpose of this study is to present an author’s methodology for reducing operational latency and increasing economic efficiency through the application of hybrid stream data processing in high-load systems. Methods: the research employs analysis and synthesis of scientific literature in the fields of stream data processing and economic assessment of IT infrastructure, comparative analysis of architectural approaches (Batch Processing, streaming-only, and hybrid architectures), economic modeling of prevented losses and revenue optimization, as well as a case study based on modeling typical operational incidents in high-load digital products. Findings: the study proposes an original model for assessing the economic effect of hybrid stream data processing that accounts for prevented losses, optimization of managerial decision-making, and the total cost of ownership of infrastructure. It is demonstrated that the application of a hybrid architecture based on the Lambda Architecture concept ensures a linear growth of infrastructure costs as workload increases, eliminates the effect of business data blindness, and significantly reduces both direct and indirect economic losses compared to batch processing and proprietary SaaS analytics solutions. Conclusions: the findings confirm that the economic efficiency of stream data processing is determined not by maximum technical performance alone, but by the alignment of architectural solutions with business risk profiles and managerial objectives. The proposed model can be used as a tool for justifying investments in analytical systems and for evaluating the ROI of digital transformation initiatives in high-load environments.
References
- Дробкова О.С., Мирохина Д.М. Применение технологии Data Lake как способ повышения эффективности деятельности промышленных предприятий // Вопросы инновационной экономики. 2024. Т. 14. № 4. С. 1381 – 1400. doi: 10.18334/vinec.14.4.122269
- Радионова Е.А. Гибридная вычислительная архитектура CPU/FPGA для задач потоковой обработки данных // Актуальные научные исследования: сборник статей XXIV Международной научно-практической конференции. Пенза: МЦНС «Наука и Просвещение», 2025. С. 50 – 53.
- Рахматуллин Т.Г. Автоматизация ETL-процессов с использованием Apache Airflow // Актуальные исследования. 2024. № 8 (190). Ч.I.
- Рахматуллин Т.Г. Оптимизация потоковой обработки игровых метрик с использованием Apache Flink и Kafka: опыт разработки масштабируемых решений // Актуальные исследования. 2024. № 45 (227). Ч. I. С. 33 – 39.
- Рахматуллин Т.Г. Оптимизация работы с большими данными в MongoDB: стратегии шардирования и индексирования // Актуальные исследования. 2024. № 50 (232). Ч.I. С. 41 – 46.
- Borkowski M., Hochreiner C., Schulte S. Minimizing cost by reducing scaling operations in distributed stream processing // Proceedings of the VLDB Endowment. 2019. Vol. 12. No. 7. P. 724 – 737. doi: 10.14778/3317315.3317316
- Hochreiner C., V?gler M., Schulte S., Dustdar S. Cost-efficient enactment of stream processing topologies // PeerJ Computer Science. 2017. Vol. 3. Article e141. doi: 10.7717/peerj-cs.141.
- Kodakandla P. Balancing performance and economics in hybrid cloud data architectures // International Journal for Research Trends and Innovation. 2022. Vol. 7, no. 2. P. 135 – 140.
- Lee M. Cost-efficient stream processing architectures: comparative analysis of cloud-native and hybrid Kafka-Spark-BigQuery pipelines // 2024. August. (Научная статья).
- P?rez-Arteaga P., Castellanos C., Castro H., Correal D., Guzm?n L., Denneulin Y. Cost comparison of Lambda architecture implementations for transportation analytics using public cloud software as a service // Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018). 2018. P. 855 – 862. doi: 10.5220/0006869308550862.
- Sychev Y.A., Musatov A.O. Incremental refactoring to reduce technical debt: migrating from an MVC monolith to microservice APIs // International Scientific Journal of Innovative Science. 2025. No. 4 (1.00). P. 28 – 30.
Supplementary files
