Innovative models of fire brigade training in China and Japan: digital experience of conducting exercises
- Authors: Shkitronov M.E1
-
Affiliations:
- Saint-Petersburg University of State Fire Service of EMERCOM of Russia
- Issue: Vol 6, No 2 (2025)
- Pages: 210-214
- Section: ARTICLES
- URL: https://ogarev-online.ru/2712-9950/article/view/375174
- ID: 375174
Cite item
Abstract
the relevance of the study presented in the article is due to the growing complexity and scale of man-made disasters and natural fires in the modern world. In order to improve the effectiveness of firefighters’ response, developed countries are forced to constantly improve the methods of education and training of firefighters, including through the introduction of advanced digital technologies. and actively use digital tools to train fire service personnel. The analysis of the innovative experience of China and Japan is of some value in improving the efficiency of fire protection in Russia. The research goal is to identify and analyze innovative models for training the personnel of the fire services of China and Japan. The objectives of the study are to consider the technologies used, training methods and evaluate the effectiveness of the digital experience of conducting exercises of fire protection units in China and Japan. The study methodology is based on a systematic approach, within the framework of which such general scientific methods as synthesis, analysis, systematization and formal-logical approach were used. The study also involved a number of special methods: historiographical analysis of scientific literature and methods of descriptive analysis. Based on the results, the following conclusions were formulated: China and Japan are actively introducing digital technologies in the training of firefighters, and the most popular innovations are virtual and augmented reality simulators, which allow you to simulate fire incidents, as well as develop decision-making and teamwork skills in a safe environment.
About the authors
M. E Shkitronov
Saint-Petersburg University of State Fire Service of EMERCOM of Russia
References
- Андреев А.Е., Доронин А.С., Терехин С.П. Перспективы построения систем пожарной сигнализации на принципах искусственного интеллекта (на примере газовых пожарных извещателей) // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России. 2022. № 1. С. 67 – 79.
- Государственная противопожарная служба Российской Федерации. МЧС России. URL: https://вдпо.рф/enc/gosudarstvennaya-protivopozharnaya-sluzhba (дата обращения: 01.05.2024).
- Грязнов С.Н., Ильков А.В., Малышев В.П., Пучков М.В. Организация мониторинга и прогнозирования чрезвычайных ситуаций // Стратегия гражданской защиты: проблемы и исследования. 2015. № 2 (9). С. 77 – 95.
- Мугинов А.И., Муллахметов Б.К., Аверьянова Ю.А. Использование искусственного интеллекта для обеспечения пожарной безопасности на предприятиях электроснабжения // Вестник науки. 2024. № 6 (75). С. 203 – 215.
- Нетребина А.С., Бокова В.А., Тоцкий Д.В. Организационно-управленческие вопросы совершенствования обеспечения пожарной безопасности объектов защиты // Безопасность техногенных и природных систем. 2021. № 4. С. 145 – 167.
- Соклаков Р.А., Якимова Л.А. Возможности применения ИИ в сфере обеспечения пожарной безопасности // Вестник науки. 2024. № 12 (81). С. 56 – 79.
- Jieyu Chen, Nan Li, Yangming Shi, Jing Du. Cross-cultural assessment of the effect of spatial information on firefighters’ wayfinding performance: A virtual reality-based study // International Journal of Disaster Risk Reduction. 2022. № 84. P. 74 – 86.
- Khair A. Development of Physical Training Program to Boost Functional Strength in Firefighter Recruits Using a Modified Nominal Group Technique // Humanitarian studies. 2019. № 8. P. 26 – 35.
- Wijkmark C. Immersive Virtual Reality for firefighter skills training // Western Norway University. 2023. № 4. P. 94 – 106.
- Yang Li, Qinglin Han, Gaozhi Cui, Ke Bai, Simeng Chen. Assessment of firefighter-training effectiveness in China based on human-factor parameters and machine learning // Technology and health care: official journal of the European Society for Engineering and Medicine. 2024. № 31 (04). P. 10 – 28.
- Yang Li, Qinglin Han, Gaozhi Cui, Ke Bai. Evaluation of Firefighter Training Effectiveness Based on Human Physiological Signals and Improved Transfer Learning // Humanitarian studies. 2019. № 3. P. 106 – 115.
Supplementary files

