Foreign experience in the use of generative machine learning networks for technical support of fire protection unit exercises

Cover Page

Cite item

Abstract

the article reveals an actual problem of studying the foreign experience of using generative machine learning networks in exercises process of fire protection units. The research goal is to identify the main features of the use of generative machine learning networks for technical support of firefighter exercises in such foreign countries as the USA, Canada, Germany, France, Japan and China. This experience can be useful for improving the efficiency of the State Fire Service of the Russian Federation. The research objectives are to analyze the main theoretical approaches to the use of generative machine learning networks in the field of fire extinguishing; as well as in the consideration of the main types of neural networks used in the training of fire protection units. The methodology is based on a systematic approach, within the framework of which such general scientific methods as synthesis, analysis, systematization and formal-logical approach were used. The study also involved a number of special methods: historiographical analysis of scientific literature and methods of descriptive analysis. As a research result, the following conclusions were formulated: the successful use of generative machine learning networks in the field of technical support for fire drills directly depends on the quality of the data on which these networks are trained. Foreign examples demonstrate the need for careful preparation and verification of information arrays, as well as the need for constant updating of data on the basis of which the network is trained. Nevertheless, generative machine learning networks have proven to be effective for the fastest possible response of fire departments to various types of incidents and effective training of personnel based on simulated real situations.

About the authors

M. E Shkitronov

Saint-Petersburg University of State Fire Service of EMEROM of Russia

I. A Sorokin

Saint-Petersburg University of State Fire Service of EMEROM of Russia

Email: shkitronov@mail.ru

References

  1. Бакриев М.Ю., Евдокимов А.А. Инновации в области тушения пожаров в высотных зданиях и зданиях повышенной этажности // Вестник науки. 2022. № 5 (50). С. 245 – 268.
  2. Государственная противопожарная служба Российской Федерации // МЧС России. URL: https://вдпо.рф/enc/gosudarstvennaya-protivopozharnaya-sluzhba (дата обращения: 01.05.2024).
  3. Зайцев Д.С., Голякова Е.И. Совершенствование систем пожаротушения ТЭЦ // The Scientific Heritage. 2022. № 82-1. С. 56 – 79.
  4. Копылов С.Н., Кущук В.А., Полтавец Д.В. Пожарная безопасность автотранспортных средств // Технологии гражданской безопасности. 2019. № 1-2. С. 20 – 37.
  5. Кутузов В.В., Талировский К.С., Магомедов Т.Н. Требования по обеспечению зданий предприятий торговли автоматическими системами противопожарной защиты // Достижения науки и образования. 2018. № 15 (37). С. 76 – 89.
  6. Павлов Е.В. Разработка методики обоснования тактико-технических требований к робототехническому комплексу многорежимного пожаротушения // Технологии гражданской безопасности. 2020. № 2 (64). С. 201 – 214.
  7. Ялхороев И.А., Сметанкина Г.И., Дорохова О.В. Обеспечение пожарной безопасности на предприятии // Мировая наука. 2019. № 2 (23). С. 39 – 56.
  8. ?zel B., Alam M.S., Khan M.U. Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning // Information. 2024. № 15. P. 53 – 68.
  9. Rahman E.U., Khan M.A., Algarni F., Zhang Y., Irfan Uddin M., Ullah I., Ahmad H.I. Computer Vision-Based Wildfire Smoke Detection Using UAVs // Mathematics Problems. 2021. № 2. P. 67 – 89.
  10. Wu D., Zhang C., Ji L., Ran R., Wu H., Xu Y. Forest fire recognition based on feature extraction from multi-view images // Trait Signal. 2021. № 38. P. 775 – 783.
  11. Yuan C., Liu Z., Zhang Y. Fire detection using infrared images for UAV-based forest fire surveillancу // International Conference on Unmanned Aircraft Systems (ICUAS). 2017. № 13. P. 567 – 572.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).