Vol 27, No 140 (2022)

Original articles

On derivations in group algebras and other algebraic structures

Arutyunov A.A.

Abstract

The work is devoted to a survey of known results related to the study of derivations in group algebras, bimodules and other algebraic structures, as well as to various generalizations and variations of this problem. A review of results on derivations in L1(G) algebras, in von Neumann algebras, and in Banach bimodules is given. Algebraic problems are discussed, in particular, derivations in groups, (σ,τ)-derivations, and the Fox calculus. A review of some results related to the application to pseudodifferential operators and the construction of the symbolic calculus is also given. In conclusion, some results related to the description of derivations as characters on the groupoid of the adjoint action are described. Some applications are also described: to coding theory, the theory of ends of metric spaces, and rough geometry.

Russian Universities Reports. Mathematics. 2022;27(140):305-317
pages 305-317 views

On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function

Atmania R., Burlakov E.O., Malkov I.N.

Abstract

In the present research, existence and stability of ring solutions to two-dimensional Amari neural field equation with periodic microstructure and Heaviside activation function are studied. Results on dependence of the inner and the outer radii of the ring solutions are obtained. Necessary conditions for existence and sufficient conditions for non-existence of radial travelling waves are formulated for homogeneous neural medium and neural media with mild periodic microstructure. Theoretical results obtained are illustrated with a concrete example based on a connectivity function commonly used in the neuroscience community.

Russian Universities Reports. Mathematics. 2022;27(140):318-327
pages 318-327 views

On exact solution of a hyperbolic system of differential equations

Grazhdantseva E.Y.

Abstract

The paper considers a hyperbolic system of two first-order partial differential equations with constant coefficients, one of which is nonlinear and contains the square of one of the unknown functions. Moreover, each equation contains two unknown functions which in turn depend on two variables. Exact solutions are found for this system: a traveling wave solution and a self-similar solution. There is also defined the type of initial-boundary conditions which allow to use the constructed general solutions in order to write out a solution of the initial-boundary value problem for the system of differential equations under consideration.

Russian Universities Reports. Mathematics. 2022;27(140):328-338
pages 328-338 views

On the best approximation and the values of the widths of some classes of functions in the Bergmann weight space

Langarshoev M.R.

Abstract

We consider the extremal problem of finding exact constants in the Jackson--Stechkin type inequalities connecting the best approximations of analytic in the unit circle\linebreak $U=\{z:|z|<1\}$ functions by algebraic complex polynomials and the averaged values of the higher-order continuity modules of the $r$-th derivatives of functions in the Bergman weight space $B_{2,\gamma}.$ The classes of analytic in the unit circle functions $W_{m}^{(r)}(\tau)$ and $W_{m}^{(r)}(\tau,\Phi)$ which satisfy some specific conditions are introduced. For the introduced classes of functions, the exact values of some known $n$-widths are calculated. In this paper, we use the methods of solving extremal problems in normalized spaces of functions analytic in a circle and a well-known method developed by V.M. Tikhomirov for estimating from below the $n$-widths of functional classes in various Banach spaces. The results obtained in the work generalize  and extend the results of the works by S.B. Vakarchuk and A.N. Shchitova obtained for the classes of differentiable periodic functions to the case of analytic in the unit circle functions belonging to the  Bergmann weight space.

Russian Universities Reports. Mathematics. 2022;27(140):339-350
pages 339-350 views

On regularization of the nondifferential Kuhn-Tucker theorem in a nonlinear problem for constrained extremum

Sumin M.I.

Abstract

We consider a regular parametric nonlinear (nonconvex) problem for constrained extremum with an operator equality constraint and a finite number of functional inequality constraints. The constraints of the problem contain additive parameters, which makes it possible to use the apparatus of the “nonlinear” perturbation method for its study. The set of admissible elements of the problem is a complete metric space, and the problem itself may not have a solution. The regularity of the problem is understood in the sense that it has a generalized Kuhn-Tucker vector. Within the framework of the ideology of the Lagrange multiplier method, a regularized nondifferential Kuhn-Tucker theorem is formulated and proved, the main purpose of which is the stable generation of generalized minimizing sequences in the problem under consideration. These minimizing sequences are constructed from subminimals (minimals) of the modified Lagrange function taken at the values of the dual variable generated by the corresponding regularization procedure for the dual problem. The construction of the modified Lagrange function is a direct consequence of the subdifferential properties of a lower semicontinuous and, generally speaking, nonconvex value function as a function of the problem parameters. The regularized Kuhn-Tucker theorem “overcomes” the instability properties of its classical counterpart, is a regularizing algorithm, and serves as a theoretical basis for creating algorithms of practical solving problems for constrained extremum.

Russian Universities Reports. Mathematics. 2022;27(140):351-374
pages 351-374 views

Solution of a second-order algebro-differential equation in a Banach space

Uskov V.I.

Abstract

This article is devoted to the study of the algebro-differential equation
\begin{equation*}
A\frac{d^2u}{dt^2}=B\frac{du}{dt}+Cu(t)+f(t),
\end{equation*}
where $A,$ $B,$ $C$ are closed linear operators acting from a Banach space $E_1$ into a Banach space $E_2$ whose domains are everywhere dense in $E_1$. $A$ is a Fredholm operator with zero index (hereinafter, Fredholm), the function $f(t)$ takes values in $E_2$; $t\in[0;T]$. The kernel of the operator $A$ is assumed to be one-dimensional. For solvability of the equation with respect to the derivative, the method of cascade splitting is applied, consisting in the stepwise splitting of the equation and conditions to the corresponding equations and conditions in subspaces of lower dimensions. One-step and two-step splitting are considered, theorems on the solvability of the equation are obtained. The theorems are used to obtain the existence conditions for a solution to the Cauchy problem. In order to illustrate the results obtained, a homogeneous Cauchy problem with given operator coefficients in the space $\mathbb{R}^2$ is solved. For this, it is considered the
second-order differential equation in the finite-dimensional space $\mathbb{C}^m$
\begin{equation*}
\frac{d^2u}{dt^2}=H\frac{du}{dt}+Ku(t).
\end{equation*}
The characteristic equation $M(\lambda):=\det(\lambda^2 I-\lambda H-K)=0$ is studied. For the polynomial $M(\lambda),$ in the cases $m=2,$ $m=3,$ the Maclaurin formulas are obtained. General
solution of the equation is defined in the case of the unit algebraic multiplicity of the characteristic equation.

Russian Universities Reports. Mathematics. 2022;27(140):375-385
pages 375-385 views

About existence of the limit to the average time profit in stochastic models of harvesting a renewable resource

Chernikova A.V.

Abstract

We investigate population dynamics models given by difference equations with stochastic parameters. In the absence of harvesting, the development of the population at time points $k=1,2,\ldots$ is given by the equation $X(k+1)=f\big(X(k)\big),$ where $X(k)$ is amount of renewable resource, $f(x)$ is a real differentiable function. It is assumed that at times $k=1,2,\ldots$ a random fraction $\omega\in[0,1]$ of the population is harvested. The harvesting process stops when at the moment $k$ the share of the collected resource becomes  greater than a certain value $u(k)\in[0,1),$ in order to save a part of the population for reproduction and to increase the size of the next harvest. In this case, the share of the extracted resource is equal to $\ell(k)=\min\big\{\omega(k),u(k)\big\}, k=1,2,\ldots.$ Then the model of the exploited population has the form
X(k+1)=f((1-l(k) )X(k) ),k=1,2,...,
where $x(0)$ is the initial population size.
For the stochastic population model, we study the problem of choosing a control $\overline{u}=(u(1),\ldots,u(k),\ldots)$ that limits at each time moment $k$ the share
of the extracted resource and under which the limit of the average
time profit function
H(l¯,x(0))limnk=1nX(k)l(k), где l¯(l(1),,l(k),)
exists and can be estimated from below with probability one
by as a large number as possible.
If the equation $X(k+1)=f\big(X(k)\big)$ has a solution of the form $X(k)\equiv x^*,$
then this solution is called the equilibrium position of the equation.
For any $k=1,2,\ldots,$ we consider random variables $A(k+1,x)=f\bigl((1-\ell(k))A(k,x)\bigr),$ $B(k+1,x^*)=f\bigl((1-\ell(k))B(k,x^*)\bigr)$; here $A(1,x)=f(x),$  $B(1,x^*)=x^*.$
It is shown that when certain conditions are met, there exists a control $\overline{u}$
under which there holds the estimate of the average time profit
1mk=1mM(A(k,x)l(k))H(l¯,x(0))1mk=1mM(B(k,x*)l(k)),
where $M$ denotes the mathematical expectation.
In addition, the conditions for the existence of control $\overline{u}$ are obtained
under which there exists, with probability one, a positive limit to the
average time profit equal to
H(¯,x(0))=<br/>limkMA(k,x)(k)=<br/>limkMB(k,x*)(k).H(\overline{\ell},x(0)) =
\lim\limits_{k\to\infty} MA(k,x)\ell(k) =
\lim\limits_{k\to\infty} MB(k,x^*)\ell(k).

Russian Universities Reports. Mathematics. 2022;27(140):386-404
pages 386-404 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».