О дифференцированиях в групповых алгебрах и других алгебраических структурах
- Авторы: Арутюнов А.А.1,2
-
Учреждения:
- ФГБУН «Институт проблем управления им. В.А. Трапезникова» Российской академии наук
- ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
- Выпуск: Том 27, № 140 (2022)
- Страницы: 305-317
- Раздел: Научные статьи
- URL: https://ogarev-online.ru/2686-9667/article/view/296486
- ID: 296486
Цитировать
Полный текст
Аннотация
Работа посвящена обзору известных результатов, связанных с исследованиями дифференцирований в групповых алгебрах, бимодулях и других алгебраических структурах, а также различным обобщениям и вариациям данной задачи. Дается обзор результатов, посвященных дифференцированиям в алгебрах ; в алгебрах фон Ноймана и в банаховых бимодулях. Обсуждаются алгебраические задачи, в частности дифференцирования в группах, -дифференцирования и исчисление Фокса. Также дается обзор некоторых результатов, связанных с приложением к псевдодифференциальным операторам и построению символьного исчисления. В заключении описываются некоторые результаты, связанные с описанием дифференцирований, как характеров на группоиде присоединенного действия. Описаны также некоторые приложения: к теории кодирования, теории концов метрических пространств и грубой геометрии.
Об авторах
Андроник Арамович Арутюнов
ФГБУН «Институт проблем управления им. В.А. Трапезникова» Российской академии наук; ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
Автор, ответственный за переписку.
Email: andronick.arutyunov@gmail.com
ORCID iD: 0000-0002-6878-0993
кандидат физико-математических наук, старший научный сотрудник; доцент кафедры высшей математики
Россия, 117997, Российская Федерация, г. Москва, ул. Профсоюзная, 65; 141701, Российская Федерация, Московская обл., г. Долгопрудный, Институтский переулок, 9Список литературы
- [1] M. Nagumo, “Einige analytische Untersuchungen in linearen metrischen Ringen”, Japan J. Math., 13 (1936), 61–80.
- [2] I. Gelfand, “Normierte Ringe”, Матем. сб., 9(51):1 (1941), 3–24.
- [3] I. Gelfand, M. Neumark, “On the imbedding of normed rings into the ring of operators in Hilbert space”, Матем. сб., 12(54):2 (1943), 197–217.
- [4] I. Kaplansky, “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858.
- [5] I. Kaplansky, “Projections in banach algebras”, Annals of Mathematics, 53:2 (1950), 235–249.
- [6] S. Sakai, “On a conjecture of Kaplansky”, Tohoku Math. J., 12:2 (1960), 31–33.
- [7] S. Sakai, “Derivations of W^*-algebras”, Annals of Mathematics, 83:2 (1966), 273–279.
- [8] S. Sakai, “Derivations of simple C^*-algebras”, J. Functional Analysis, 2:2 (1968), 202–206.
- [9] S. Sakai, C^*-algebras and W^*-algebras, Classics in Mathematics, Springer-Verlag Berlin Heidelberg, Berlin, 1998.
- [10] C.A. Akemann, G.A. Elliott, G.K. Pedersen, J. Tomiyama, “Derivations and multipliers of C^* -algebras”, Amer. J. Math., 98:3 (1976), 679–708.
- [11] C.A. Akemann, G.K. Pedersen, “Central sequences and inner derivations of separable C^*-algebras”, Amer. J. Math., 101 (1979), 1047–1061.
- [12] B.E. Johnson, A.M. Sinclair, “Continuity of derivations and a problem of Kaplansky”, Amer. J. Math., 90:4 (1968), 1067–1073.
- [13] G.A. Elliott, “Some C^*-algebras with outer derivations, III”, Annals of Mathematics, 106 (1977), 121–143.
- [14] C^*-Algebras and Their Automorphism Groups. V. 14, ed. G.K. Pedersen, Academic Press, 1979.
- [15] I. Kaplansky, “Derivations of Banach Algebras”, Seminars on Analytic Functions, Princeton Univ. Press, Princeton, N.J.: Seminar V. Analytic functions as related to Banach algebras, II, 1958, 254–258.
- [16] S. Sakai, Operator Algebras in Dynamical Systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1991.
- [17] R.V. Kadison, “Derivations of operator algebras”, Ann. of Math., 83 (1966), 280–293.
- [18] R.V. Kadison, J.R. Ringrose, “Derivations of operator group algebras”, Amer. J. Math., 88:3 (1966), 562–576.
- [19] R.V. Kadison, J.R. Ringrose, “Derivations and automorphisms of operator algebras”, Commun. Math. Phys., 4 (1967), 32–63.
- [20] B.E. Johnson, J.R. Ringrose, “Derivations of operator algebras and discrete group algebras”, Bull. London Math. Soc., 1 (1969), 70–74.
- [21] B.E. Johnson, Cohomology in Banach Algebras, Mamoirs of the American Mathematical Society, 127, American Mathematical Society, Providence, Rhode Island, USA, 1972.
- [22] H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 24, Oxford University Press, New York, 2000, 928 pp.
- [23] B.E. Johnson, “The derivation problem for group algebras of connected locally compact groups”, Journal of the London Mathematical Society, 63:2 (2001), 441–452.
- [24] V. Losert, “The derivation problem for group algebras”, Annals of Mathematics, 168:1 (2008), 221–246.
- [25] B.E. Johnson, S. Parrott, “Operators commuting with a von Neumann algebras modulo the set of compact operators”, Journal of Functional Analysis, 11 (1972), 39–61.
- [26] S. Popa, “The commutant modulo the set of compact operators of a von Neumann algebra”, Journal of Functional Analysis, 71 (1987), 393–408.
- [27] A. Ber, J. Huang, G. Letvina, F. Sukochev, “Derivations with values in ideals of semifinite von Neumann algebras”, Journal of Functional Analysis, 272:12 (2017), 4984–4997.
- [28] J. Huang, Derivations with values into ideals of a semifinite von Neumann algebra, Australia’s Global University, School of Mathematics and Statistics Faculty of Science, 2019, http://hdl.handle.net/1959.4/63344.
- [29] A. Ber, J. Huang, K. Kudaybergenov, F. Sukochev, “Non-existence of translation-invariant derivations on algebras of measurable functions”, Quaestiones Mathematicae, 45:10 (2022).
- [30] A.Ya. Helemskii, The Homology of Banach and Topological Algebras, Mathematics and its Applications, 41, Kluwer Academic Publishers, Amsterdam, 1989.
- [31] A.Ya. Helemskii, Banach and Locally Convex Algebras, Oxford Mathematical Monographs, Claredon Press, 1993.
- [32] G. Hochschild, “On the cohomology groups of an associative algebra”, Annals of Mathematics, 46:1 (1945), 58–67.
- [33] G. Hochschild, B. Kostant, A. Rosenberg, “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc, 102:3 (1962), 383–408.
- [34] S. Witherspoon, An Introduction to Hochschild Cohomology, Texas AM University, 2017.
- [35] D. Burghelea, “The cyclic homology of the group rings”, Commentarii Mathematici Helvetici, 60 (1985), 354–365.
- [36] A.S. Mischenko, “Derivations of group algebras and Hochschild cohomology”, 2020, http://arxiv.org/abs/1811.02439.
- [37] A.S. Mischenko, “Geometric description of the Hochschild Cohomology of group algebras”, Topology, Geometry, and Dynamics: Rokhlin Memorial, Contemporary Mathematics, 772, AMS, Providence, R.I., etc., United States, 2021, 267–279.
- [38] A.S. Mischenko, “Description of outer derivations of the group algebras”, Topology and its Applications, 275 (2020), 107013.
- [39] M. Lorentz, R. Willett, “Bounded derivations on uniform Roe algebras”, Rocky Mountain J. Math., 50 (2020), 1747–1758.
- [40] V. Manuilov, “On Hochschild homology of uniform Roe algebras with coefficients in uniform Roe bimodules”, https://arxiv.org/abs/2201.06488.
- [41] M.K. Smith, “Derivations of group algebras of finitely-generated, torsion-free, nilpotent groups”, Houston J. Math., 4 (1978), 277–288.
- [42] E. Spiegel, “Derivations of integral group rings”, Communications in Algebra, 22:8 (1994), 2955–2959.
- [43] D. Boucher, D. Ulmer, “Linear codes using skew polynomials with automorphisms and derivations”, Des. Codes Cryptogr., 70 (2014), 405–431.
- [44] L. Creedon, K. Hughes, “Derivations on group algebras with coding theory applications”, Finite Fields and Their Applications, 56 (2019), 247–265.
- [45] O.D. Artemovych, V.A. Bovdi, M.A. Salim, “Derivations of group rings”, 2020, https://arxiv.org/abs/2003.01346.
- [46] Y. Rao, S. Kosari, A. Khan, N. Abbasizadeh, “A Study on special kinds of derivations in ordered hyperrings”, Symmetry, 14 (2022), 2205.
- [47] D. Chaudhuri, “(σ,τ)-derivations of group rings”, Comm. Algebra, 47:9 (2019), 3800–3807.
- [48] O. Ore, “Theory of non-commutative polynomials”, Ann. Math., 34 (1933), 480–508.
- [49] V.K. Kharchenko, Automorphisms and Derivations of Associative Rings, Mathematics and its Applications, 69, Kluwer Academic Publishers, Amsterdam, 1991.
- [50] F.A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables, Moscow University Press, Moscow, 1983.
- [51] L.A. Bokut, I.V. Lvov, V.K. Kharchenko, “Noncommutative Rings”, Algebra – 2, Itogi Nauki I Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 18, VINITI, Moscow, 1988, 5–116.
- [52] P.M. Cohn, Difference Algebra, Interscience Publ., New York, 1965.
- [53] P.M. Cohn, Skew Fields Constructions, London Mathematical Society Lecture Note Series, 27, Cambridge University Press, Cambridge, 1977.
- [54] K.R. Goodearl, R.B. Warfield, Jr, An Introduction to Non-Commutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
- [55] D.A. Jordan, “Iterated skew polynomial rings and quantum groups”, Journal of Algebra, 156 (1993), 194–218.
- [56] V. Kac, P. Cheung, Quantum Calculus, Universitext (UTX), Springer, New York, 2002.
- [57] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, 1st ed., Springer-Verlag, New York, 1995.
- [58] T.Y. Lam, A. Leroy, “Algebraic conjugacy classes and skew polynomial rings”, Perspectives in Ring Theory, NATO ASI Series, 233, eds. F. van Oystaeyen, L. Le Bruyn, Springer, Dordrecht, 1988, 153-203.
- [59] J.T. Hartwig, D. Larsson, S.D. Silvestrov, “Deformations of Lie algebras using σ-derivations”, Journal of Algebra, 295:2 (2006), 314–361.
- [60] D. Larsson, S.D. Silvestrov, “Quasi-deformations of sl_2 (F) using twisted derivations”, Comm. Algebra, 35:12 (2007), 4303–4318.
- [61] Yu.I. Manin, Topics in Non-Commutative Geometry, Porter Lectures, Princeton University Press, 1991.
- [62] L.R. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, 330, Springer, Dordrecht, 1995.
- [63] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, Amer. Math. Society, Providence, Rhode Island, 1987.
- [64] Heide Gluesing-Luerssen, “Skew-Polynomial Rings and Skew-Cyclic Codes”, 2019, https://arxiv.org/abs/1902.03516.
- [65] D. Larsson, S.D. Silvestrov, “Quasi-hom-Lie algebras, central extensions and 2 -cocycle-like identities”, Journal of Algebra, 288:2 (2005), 321–344.
- [66] O. Elchinger, K. Lundengard, A. Makhlouf, S. D. Silvestrov, “Brackets with (τ,σ)-derivations and (p; q)-deformations of Witt and Virasoro algebras”, Forum Math., 28:4 (2016), 657–673.
- [67] G. Song, C. Xia, “Simple deformed Witt algebras”, Algebra Colloquium, 18:3 (2011), 533–540.
- [68] G. Song, Y. Wu, B. Xin, “The σ-derivations of C[x^(±1),y^(±1) ]”, Algebra Colloquium, 22:2 (2015), 251–258.
- [69] E. Gordji, “A characterization of (σ,τ)-derivations on von Neumann algebras”, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 73 (2009).
- [70] R.H. Fox, “Free differential calculus. I: Derivation in the free group ring”, The Annals of Mathematics, 57:3 (1953), 547–560.
- [71] R.H. Fox, “Free differential calculus. II: The isomorphism problem of groups”, The Annals of Mathematics, 59:2 (1954), 196–210.
- [72] R.H. Fox, “Free differential calculus III. Subgroups”, The Annals of Mathematics, 64:3 (1956), 407–419.
- [73] K.T. Chen, R.H. Fox, R.C. Lyndon, “Free differential calculus IV. The quotient groups of the lower central series”, The Annals of Mathematics, 68:1 (1958), 81–95.
- [74] R.H. Fox, “Free differential calculus V. The Alexander matrices re-examined”, The Annals of Mathematics, 71:3 (1960), 408–422.
- [75] G. Massuyeau, V. Turaev, “Quasi-Poisson structures on representation spaces of surfaces”, 2012, https://arxiv.org/abs/1205.4898.
- [76] А.Н. Паршин, “О кольце формальных псевдодифференциальных операторов”, Алгебра. Топология. Дифференциальные уравнения и их приложения, Сборник статей. К 90-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 224, Наука, МАИК «Наука/Интерпериодика», М., 1999, 291–305; англ. пер.:A. N. Parshin, “On a ring of formal pseudodifferential operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280.
- [77] A. Zheglov, “Schur-Sato theory for quasi-elliptic rings”, 2022, https://arxiv.org/abs/2205.06790.
- [78] В.П. Маслов, Операторные методы, Наука, М., 1973. [V.P. Maslov, Operator Methods, Nauka Publ., Moscow, 1973 (In Russian)].
- [79] М.А. Шубин, Псевдодифференциальные операторы и спектральная теория, Добросвет, Москва. [M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Dobrosvet Publ., Moscow (In Russian)].
- [80] M.F. Atiyah, I.M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69:3 (1963), 422–433.
- [81] M.F. Atiyah, I.M. Singer, “The index of elliptic operators I”, Annals of Mathematics, 87:3 (1968), 484–530.
- [82] I.N. Herstein, “Sui commutatori degli anelli semplici”, Seminario Mat. e. Fis. di Milano, 33 (1963), 80–86.
- [83] V.K. Kharchenko, “Differential identities of prime rings”, Algebra and Logic, 17 (1978), 155–168.
- [84] P. Grzeszczuk, “On nilpotent derivations of semiprime rings”, Journal of Algebra, 149 (1992), 313–321.
- [85] C. Chen-Lian, L. Tsiu-Kwen, “Nilpotent derivations”, Journal of Algebra, 287:2 (2005), 381–401.
- [86] D. Wright, “On the Jacobian Conjecture”, Illinois J. Math, 25 (1981), 423–440.
- [87] M. Nagata, “On the fourteenth problem of Hilbert”, Proceedings of the International Congress of Mathematicians, Cambridge University Press., Edinburgh, 1958, 459–462.
- [88] M. Nagata, Lectures on the fourteenth problem of Hilbert, 31, Tata Institute of Fundamental Research Lectures on Mathematics, Bombai, 1965, 65 pp.
- [89] M. Ferrero, Y. Lequain, A. Nowicki, “A note on locally nilpotent derivations”, Journal of Pure and Applied Algebra, 79 (1992), 45–50.
- [90] D. Daigle, “Locally nilpotent derivations and the structure of rings”, Journal of Pure and Applied Algebra, 224:4 (2020), 106–201.
- [91] S. Maubach, “The commuting derivations conjecture”, Journal of Pure and Applied Algebra, 179:1–2 (2003), 159–168.
- [92] Jiantao Li, Xiankun Du, “Pairwise commuting derivations of polynomial rings”, Linear Algebra and its Applications, 436:7, 2375–2379.
- [93] А.А. Арутюнов, А.С. Мищенко, А.И. Штерн, “Деривации групповых алгебр”, Фундамент. И прикл. матем., 21:6 (2016), 65–78; англ. пер.: A.A. Arutyunov, A.S. Mishchenko, A.I. Shtern, “Derivations of group algebras”, Journal of Mathematical Sciences, 248 (2020), 709–718.
- [94] А.А. Арутюнов, А.С. Мищенко, “Гладкая версия проблемы Джонсона о деривациях групповых алгебр”, Матем. сб., 210:6 (2019), 3–29; англ. пер.: A.A. Arutyunov, A.S. Mishchenko, “A smooth version of Johnson’s problem on derivations of group algebras”, Sb. Math., 210:6 (2019), 756–782.
- [95] А.А. Арутюнов, “Алгебра дифференцирований в некоммутативных групповых алгебрах”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 308, МИАН, М., 2020, 28–41; англ. пер.: A.A. Arutyunov, “Derivation algebra in noncommutative group algebras”, Proc. Steklov Inst. Math., 308 (2020), 22–34.
- [96] A.A. Arutyunov, A.V. Alekseev, “Cohomology of n -categories and derivations in group algebras”, Topology and its Applications, 275 (2019).
- [97] A. Arutyunov, “A combinatorial view on derivations in bimodules”, 2022, https://arxiv.org/abs/2208.05478.
- [98] А.А. Арутюнов, А.С. Мищенко, “Редукция исчисления псевдодифференциальных операторов на некомпактном многообразии к исчислению на компактном многообразии удвоенной размерности”, Матем. заметки, 94:4 (2013), 488–505; англ. пер.: A.A. Arutyunov, A.S. Mishchenko, “Reduction of the calculus of pseudodifferential operators on a noncompact manifold to the calculus on a compact manifold of doubled dimension”, Math. Notes, 94:4 (2013), 455–469.
- [99] А.А. Арутюнов, А.С. Мищенко, “Редукция ПДО исчисления на некомпактном многообразии к компактному многообразию удвоенной размерности”, Доклад. РАН, 451:4 (2013), 369–373; англ. пер.: A.A. Arutyunov, A.S. Mishchenko, “Reduction of PDO calculus on a noncompact manifold to a double-dimensional compact manifold”, Doklady Mathematics, 88:1 (2013), 427–430.
- [100] А.А. Арутюнов, “Редукция нелокальных псевдодифференциальных операторов на некомпактном многообразии к классическим псевдодифференциальным операторам на компактном многообразии удвоенной размерности”, Матем. заметки, 97:4 (2015), 493–502; англ. пер.: A.A. Arutyunov, “Reduction of nonlocal pseudodifferential operators on a noncompact manifold to classical pseudodifferential operators on a double-dimensional compact manifold”, Math. Notes, 97:4 (2015), 502–509.
Дополнительные файлы
