Vol 28, No 143 (2023)

Original articles

Estimation of total income with discounting for probabilistic models of population dynamics

Bazulkina A.A.

Abstract

Models of homogeneous and structured populations given by differential equations depending on random parameters are considered. A population is called homogeneous if it consists of only one animal or plant species, and structured if it contains $n\geqslant 2$ different species or age classes. We assume that in the absence of exploitation, the dynamics of the population is given by the system of differential equations
 

x˙=g(x),xR+nxRn:x10,,xn0.

 
At times $\tau_{k}=kd,$ where $d>0,$\! $k=1,2,\ldots,$ random shares of the resource $\omega_{k}=(\omega_{k }^1,\ldots,\omega_{k}^n)\!\in\Omega\subseteq [0,1]^n$ are extracted from this population.
If $\omega_{k}^i$ is greater than some value $u_{k}^i\in[0,1),$ then the collection of the resource of the $i$-th type stops at the moment $\tau_{k}$ and the share of the extracted resource turns out to be equal to $\ell_{k}^i\doteq\min(\omega_{k}^i,u_{k}^i).$  Let $C^{i}\geqslant 0$ be the cost of the resource of the $i$-th type, $i=1,\ldots,n,$ $X_k^{i}=x^{i}(kd-0)$~the quantity of the $i$-th type of resource at the time $\tau_k$ before collection; then the amount of income at the moment  equals $Z_k\doteq\displaystyle\sum_{i=1}^n{C^{i}X_k^{i}\ell_{k}^i}.$
The properties of the characteristic of the total income, which is defined as the sum of the series of income values at the time $\tau_k,$ taking into account the discounting factor $\alpha>0$ are investigated:
Hα(l¯,x0)=k=1Zke-αk=k=1e-αki=1nCiXkilki,
where $\overline{\ell}\doteq(\ell_{1},\ldots,\ell_{k},\ldots),$ $x_0$ is the initial population size. The value of $\alpha$ indicates that the value of the income received later decreases.
Estimates of the total income, taking into account discounting, made with probability one are obtained.
 
 
Russian Universities Reports. Mathematics. 2023;28(143):217-226
pages 217-226 views

On the existence of admissible processes for control systems with mixed constraints

Borzov N.S., Zhukovskaya Z.T.

Abstract

A control system with mixed equality-type constraints and end-point constraints is considered. In terms of the generalized Jacobian (Clarke’s derivative) with respect to the control variable of the mapping defining the constraints, sufficient conditions for the existence of continuous admissible positional controls are obtained. The proof of the corresponding theorem is based on reducing the control system to a boundary value problem for an ordinary differential equation via a nonlocal implicit function theorem. This problem is then reduced to the problem of finding a fixed point of a continuous mapping defined on a finite-dimensional closed ball and to applying an analogue of Brouwer’s fixed point theorem. In addition, a control system with mixed inequality-type constraints and end-point constraints is studied. In terms of the first derivatives with respect to the control variable of the functions that define the constraints, sufficient conditions for the existence of continuous admissible positional controls are also obtained. The proof of the corresponding theorem is carried out by passing from a system of smooth inequality-type constraints to one locally Lipschitz equality-type constraint.

Russian Universities Reports. Mathematics. 2023;28(143):227-235
pages 227-235 views

Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear

Burlakov E.O., Malkov I.N.

Abstract

In this paper we constructed a mathematical model based on a continuous dynamic system, which is formalizing the interaction of fusarium fungi, wheat plants and soil microorganisms (mycophages and saprophages). The paper presents a statistical analysis of the available experimental data obtained under laboratory conditions, on the basis of which we solved the problem of restoring biologically interpreted parameters of the constructed model of the considered ecological system. The paper also considers the problem of impulse control within the constructed mathematical framework, which corresponds to a correction on the food webs in the system in order to stimulate the growth of the populations of natural antagonists of the fusarium fungus causing wheat pathology by applying special mixtures of organic fertilizers to the soil. We obtained conditions that guarantee controllability within the framework of the constructed mathematical model, as well as providing continuous dependence of solutions of the modeling equations on control.

Russian Universities Reports. Mathematics. 2023;28(143):236-244
pages 236-244 views

Dynamic evaluation of criteria of the health-relatad quality of life on the base of the hierarchies analysis method

Dyakovich M.P., Finogenko I.A.

Abstract

A method for studying the dynamics of the main criteria of the health-related quality of life (HRQoL), based on the hierarchies analysis method (HAM) of T. Saaty is being developed. It is assumed that the assessments of HRQoL scales (criteria) according to existing specific and non-specific questionnaires change over time, which also leads to a change in the degree of their influence on each other. This, in turn, changes the integral indicators of HRQoL. There is a need to work with tables of dynamic judgments based on HAM using different classes of time functions, considering the specifics of the task and HRQoL criteria. The paper proposes a new methodology for estimating HRQoL, taking into account the dynamics of the main characteristics of HAM.

Russian Universities Reports. Mathematics. 2023;28(143):245-255
pages 245-255 views

To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information

Maksimov V.P.

Abstract

A linear control system with continuous and discrete times and discrete memory is considered. The model includes an uncertainty in the description of operators implementing control actions. This uncertainty is a consequence of random disturbances under the assumption of their uniform distribution over known intervals. With each implementation a corresponding trajectory arises from random perturbations, and in the aggregate - an ensemble of trajectories, for which a component-by-component probabilistic description is given in the form of a set of probability density functions parametrized by the current time. To construct these functions, the previously obtained representation of the Cauchy operator of the system under consideration is used. The proposed probabilistic description of perturbations for trajectory variables allows one to find their standard characteristics, including expectation and variance, as well as the entire possible range of values. The results are constructive in nature and allow for effective computer implementation. An illustrative example is given.

Russian Universities Reports. Mathematics. 2023;28(143):256-267
pages 256-267 views

Ekeland variational principle for quasimetric spaces

Sengupta R.

Abstract

 In this paper, we study real-valued functions defined on quasimetric spaces. A generalization of Ekeland’s variational principle and a similar statement from the article [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011] is obtained for them. The modification of the variational principle given here is applicable, in particular, to a wide class of functions unbounded from below. The result obtained is applied to the study the minima of functions defined on quasimetric spaces. A Caristi-type condition is formulated for conjugate-complete quasimetric spaces. It is shown that the proposed Caristi-type condition is a sufficient condition for the existence of a minimum for lower semicontinuous functions acting in conjugate-complete quasimetric spaces.

Russian Universities Reports. Mathematics. 2023;28(143):268-276
pages 268-276 views

The coefficient problem for bounded functions and its applications

Stupin D.L.

Abstract

A review of the solution of the classical coefficient problem on the class $\Omega_0$ of bounded in the unit disc functions $\omega$ with normalization $\omega(0)=0,$  going back to I. Schur, is given. Then the first six inequalities, describing respectively the first six coefficient bodies on the class $\Omega_0,$ are derived. Next, a method of obtaining similar inequalities for classes $M_F$ of functions subordinated to the holomorphic function $F,$ giving the solution of the coefficient problem for these classes, is given. Then the properties of the mentioned inequalities as well as the relations between them are analyzed. In addition, it is shown that only one $n$-th inequality is sufficient to describe the $n$-th body of coefficients on the class $\Omega_0,$ and hence on $M_F.$


The problems of estimating both the modulus of each initial Taylor coefficient individually and estimating modules of all Taylor coefficients at once are discussed.

The problem of obtaining the sharp estimates of the modulus of the Taylor coefficient with number $n,$ i.e. the functional $|\{f\}_n|,$ on the class $M_F$ is at first reduced to the problem of estimating the functional over the class $\Omega_0,$ which in turn is reduced to the problem of finding the maximal modulo of conditional extremum of a real-valued function of $2(n-1)$ real arguments with constraints of inequality type $0 \leqslant x_k \leqslant1,$ $0\leqslant\varphi_k<2\pi,$ which allows us to apply standard methods of differential calculus to study for extrema, since the target function is infinitely smooth in all of its arguments. For this purpose, the results of the solution of the classical coefficient problem on the class $\Omega_0$ are used.

Russian Universities Reports. Mathematics. 2023;28(143):277-297
pages 277-297 views

Regularization of classical optimality conditions in optimization problems for linear Volterra-type systems with functional constraints

Sumin V.I., Sumin M.I.

Abstract

e consider the regularization of classical optimality conditions (COCs) — the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) — in a convex optimal control problem with functional constraints such as equalities and inequalities. The controlled system is given by a linear functional-operator equation of the second kind of general form in the space L2m, the main operator on the right side of the equation is assumed to be quasi-nilpotent. The problem functional to be minimized is convex (probably not strongly). The regularization of the COCs in the non-iterative and iterative forms is based on the use of the methods of dual regularization and iterative dual regularization, respectively. Obtaining non-iterative regularized COCs uses two regularization parameters, one of which is “responsible” for the regularization of the dual problem, the other is contained in a strongly convex regularizing Tikhonov addition to the objective functional of the original problem, thereby ensuring the correctness of the problem of minimizing the Lagrange function. The main purpose of regularized LP and PMP is the stable generation of minimizing approximate solutions (MASs) in the sense of J. Warga. Regularized COCs: 1) are formulated as existence theorems for MASs in the original problem with simultaneous constructive representation of specific MASs; 2) are sequential generalizations of classical analogues — their limiting variants and preserve the general structure of the latter; 3) “overcome” the ill-posedness properties of the COCs and give regularizing algorithms for solving optimization problems. Illustrating examples are considered: the problem of optimal control for the equation with delay, the problem of optimal control for the integrodifferential equation of the type of transport equation.

Russian Universities Reports. Mathematics. 2023;28(143):298-325
pages 298-325 views

Estimates of the phase trajectories of controlled systems with multi-valued impulses

Filippova O.V.

Abstract

We consider a controlled system for the differential equation x˙(t)=f(t,x(t),u(t),ξ),  t[a,b],  x(a)=x, \dot{x}(t)=f(t,x(t),u(t), \xi), \ \ t \in [a,b] , \ \ x(a)=\mathrm{x}, where the parameter $\xi$ is an element of some given metric space, the control $u$ satisfies the constraint u(t)U(t,x(t),ξ),  t[a,b]. u(t)\in U(t,x(t), \xi), \ \ t \in [a,b]. It is assumed that at each given moment of time $t_k\in (a,b)$ a solution $x:[a,b]\to \mathbb{R}^n$ (a phase trajectory) suffers  discontinuity, the magnitude of which belongs to a non-empty compact set $I_k( x(t_k))\subset \mathbb{R}^n,$ and is an  absolutely continuous function on intervals $(t_{k-1},t_k]$. The  control function is assumed to be measurable. A theorem on estimating the distance from a given piece-wise absolutely continuous function $y:[a,b]\to \mathbb{R}^n$  to the set of phase trajectories for all initial values from a neighborhood of a vector $x_0$ and for all parameters from a neighborhood of a point $\xi_0$ is proven. It is assumed that for the given initial value $\mathrm{x}=x_0$ of the solution and for the value $\xi=\xi_0$ of the parameter, the set of phase trajectories is a priori limited. The proven theorem allows, by selecting the function $y$, to obtain an approximate solution of the controlled system, as well as an estimate of the error of such solution.

 

Russian Universities Reports. Mathematics. 2023;28(143):326-334
pages 326-334 views

About topological properties of attraction set in ultrafilter space

Chentsov A.G.

Abstract

The representation of attraction set (AS) in the class of nets in the ultrafilter space on the broadly understood measurable space (MS) with topologies of Stone and Wallman types is considered. Representation of the interior of AS and some of its implications are obtained. Possibilities of the choice of usual solutions are defined by specifying constraints of asymptotic nature (CAN). The mentioned CAN can be connected with weakening of standard constraints (in control problems, boundary and intermediate conditions, phase restrictions; in problems of mathematical programming, constraints of inequality type), but they may appear initially in the form of nonempty directed (usually) families of sets. In article, some set families connected with construction of ultrafilters (maximal filters) of MS majorizing a given a priory filter are treated as CAN. Shown, that in this case, under condition of the void intersection of all sets of the given filter, the resulting CAN variant is closed, but not canonically closed set for each of topologies Wallman and Stone types. This is connected with the fact established in the article that, for initial filter with property of the empty intersection of all its sets, the interior of generated by this filter AS is empty (at the same time, there are examples of control problems with opposite property: under empty intersection of sets for the family defining CAN, the interior of arising AS is not empty).

Russian Universities Reports. Mathematics. 2023;28(143):335-356
pages 335-356 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».