Ekeland variational principle for quasimetric spaces

Cover Page

Cite item

Full Text

Abstract

 In this paper, we study real-valued functions defined on quasimetric spaces. A generalization of Ekeland’s variational principle and a similar statement from the article [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011] is obtained for them. The modification of the variational principle given here is applicable, in particular, to a wide class of functions unbounded from below. The result obtained is applied to the study the minima of functions defined on quasimetric spaces. A Caristi-type condition is formulated for conjugate-complete quasimetric spaces. It is shown that the proposed Caristi-type condition is a sufficient condition for the existence of a minimum for lower semicontinuous functions acting in conjugate-complete quasimetric spaces.

About the authors

Richik Sengupta

Skolkovo Institute of Science and Technology; Derzhavin Tambov State University

Author for correspondence.
Email: r.sengupta@skoltech.ru
ORCID iD: 0000-0001-9916-8177

Candidate of Physics and Mathematics, Researcher

Russian Federation, 30 Bolshoy Boulevard, Territory of the Skolkovo Innovation Center, Moscow 121205, Russian Federation; 33 International St., Tambov 392036, Russian Federation

References

  1. A.V. Arutyunov, A.V. Greshnov, “Theory of (q1; q2) -quasimetric spaces and coincidence points”, Dokl. RAS, 94:1 (2016), 434–437.
  2. M.A. Krasnosel’skiy, P.P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian).
  3. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II, Dover Publications, Mineola, New York, 1957, 1961.
  4. J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, J. Wiley & Sons, N.Y., 1984.
  5. A.V. Arutyunov, B.D. Gel’man, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58.
  6. R. Vinter, Optimal Control, Birkhauser, Boston, 2000.
  7. A.V. Arutyunov, V.A. de Oliveira, F.L. Pereira, E.S. Zhukovskiy, S.E. Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143.
  8. A.V. Arutyunov, N.T. Tynyanskii, “The maximum principle in a problem with phase constraints”, Soviet Journal of Computer and System Sciences, 23 (1985), 28–35.
  9. J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251.
  10. A. Granas, J. Dugundji, Fixed Point Theory, Springer–Verlag, N.Y., 2003.
  11. M.A. Khamsi, “Remarks on Caristi’s fixed point theorem”, Nonlinear Analysis, Theory, Methods and Applications, 71:1-2 (2009), 227–231.
  12. A.V. Arutyunov, E.R. Avakov, S.E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828.
  13. E.S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94.
  14. A.V. Arutyunov, S.E. Zhukovskiy, N.G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169.
  15. J.M. Borwein, D. Preiss, “A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions”, Trans. Amer. Math. Soc., 303:2 (1987), 517–527.
  16. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33.
  17. A.V. Arutyunov, S.E. Zhukovskiy, “Variational Principles in Nonlinear Analysis and Their Generalization”, Mathematical Notes, 103:5-6 (2018), 1014–1019.
  18. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61.
  19. R. Sengupta, S. Zhukovskiy, “Ekeland’s Variational Principle for Functions Unbounded from below”, Discontinuity, Nonlinearity and Complexity, 9:4 (2020), 553–558.
  20. S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, 158:8 (2011), 1073–1084.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).