APPLICATION METHOD OF RIEMANN INVARIANTS TO SOLVE THE PROBLEM OF SURFACE RECONSTRUCTION ON THE SET OF NEGATIVE GAUSSIAN CURVATURE

Cover Page

Cite item

Full Text

Abstract

This paper addresses the question of recoverability in the three-dimensional Euclidean space with C 3 -regular surface explicitly specified by the equation z=z ( x, y ) on the entire plane of R 2 on its specified negative Gaussian curvature. The solution to this problem is reduced to the proof of existence and uniqueness of the R 2 of the classical solving differential equations of Monge-Ampere equations of hyperbolic type. Formulated the conditions for the existence of such a decision as a whole.

About the authors

Yuliya Gennadievna Fomicheva

Tambov State University named after G.R. Derzhavina

Email: fomichevajulia@mail.ru
Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department Tambov, the Russian Federation

Anastasiya Andreevna Rudichenko

Tambov State University named after G.R. Derzhavina

Email: nastya2801@mail.ru
Master program student of the Functional Analysis Department Tambov, the Russian Federation

References

  1. Бакельман И.Я., Вернер Л.А., Кантор Б.Е. Введение в дифференциальную геометрию «в целом». М.: Наука, 1973.
  2. Братков Ю.Н. О существовании классического решения гиперболического уравнения Монжа-Ампера в целом // Фундаментальная и прикладная математика. 2000. Т. 6. № 2.
  3. Туницкий Д.В. Системы в римановых инвариантах и уравнения Монжа-Ампера гиперболического типа // Деп.ВИНИТИ 16.07.87, № 5122-В87.
  4. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложений к газовой динамике. М.: Наука, 1978.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).