MULTI-VALUED COVERING MAPPINGS IN SPACES WITH VECTOR-VALUED METRICS IN RESEARCH OF FUNCTIONAL INCLUSIONS

Cover Page

Cite item

Full Text

Abstract

The concept of covering is extended to multi-valued mappings acting in spaces with vectorvalued metrics. The statement about coincidence points of two multi-valued mappings (acting in spaces with vector-valued metrics), one of which is covering and the other is Lipschitz, is formulated and proved. The test of covering of Nemytskiy operator in the space of measurable essentially bounded vector-valued functions equipped with a vector-valued metric is derived. These results are applied to the research of functional inclusions with deviating argument.

About the authors

Evgeny Semenovich Zhukovskiy

Tambov State University named after G.R. Derzhavin; Peoples’ Friendship University of Russia

Email: zukovskys@mail.ru
Doctor of Physics and Mathematics, Professor, Director of the Research Institute of Mathematics, Physics and Informatics; Doctor of Physics and Mathematics, Professor of the Department of Nonlinear Analysis and Optimization Tambov, the Russian Federation; Moscow, the Russian Federation

Elena Aleksandrovna Pluzhnikova

Tambov State University named after G.R. Derzhavin

Email: pluznikova_elena@mail.ru
Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department Tambov, the Russian Federation

References

  1. Люстерник Л.А. Об условных экстремумах функционалов // Математический сборник. 1934. Т. 41. № 3. С. 390-401.
  2. Graves L.M. Some mapping theorems // Duke Math. J. 1950. V. 17. № 2. P. 111-114.
  3. Левитин Е.С., Милютин А.А., Осмоловский Н.П. Условия высших порядков локального минимума в задачах с ограничениями // УМН. 1978. Т. 33. № 6(204). С. 85-148.
  4. Арутюнов А.В. Накрывающие отображения в метрических пространствах и неподвижные точки // Доклады Академии наук. 2007. Т. 416. № 2. С. 151-155.
  5. Арутюнов А.В. Точки совпадения двух отображений // Функциональный анализ и его приложения. 2014. Т. 48. № 1. С. 89-93.
  6. Аваков Е.Р., Арутюнов А.В., Жуковский Е.С. Накрывающие отображения и их приложения к дифференциальным уравнениям, не разрешенным относительно производной // Дифференциальные уравнения. 2009. Т. 45. № 5. С. 613-634.
  7. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Covering mappings and well-posedness of nonlinear Volterra equations // Nonlinear Analysis: Theory, Methods and Applications. 2012. V. 75. Iss. 3. P. 1026-1044.
  8. Арутюнов А.В., Жуковский Е.С., Жуковский С.Е. О корректности дифференциальных уравнений, не разрешенных относительно производной // Дифференциальные уравнения. 2011. Т. 47. № 11. С. 1523-1537.
  9. Жуковский Е.С., Плужникова Е.А. Об управлении объектами, движение которых описывается неявными нелинейными дифференциальными уравнениями // Автоматика и телемеханика. 2015. № 1. С. 31-56.
  10. Жуковская Т.В., Жуковский Е.С., Плужникова Е.А. Об исследовании систем функциональных уравнений методами теории накрывающих отображений // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2013. Т. 18. Вып. 1. С. 38-42.
  11. Жуковская Т.В., Жуковский Е.С. Об итерационном методе нахождения решений операторных уравнений с накрывающими отображениями // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2014. Т. 19. Вып. 2. С. 365-368.
  12. Arutyunov A., de Oliveira V.A., Pereira F.L., Zhukovskiy S., Zhukovskiy E. On the solvability of implicit differential inclusions // Applicable Analysis. 2015. V. 94. № 1. P. 129-143.
  13. Жуковский Е.С. О точках совпадения векторных отображений // Известия вузов. Математика. 2016. № 10. С. 14-28.
  14. Жуковский Е.С. О возмущениях векторно накрывающих отображений и системах уравнений в метрических пространствах // Сибирский математический журнал. 2016. Т. 57. № 2(236). С. 297-311.
  15. Жуковский Е.С. О точках совпадения многозначных векторных отображений метрических пространств // Математические заметки. 2016. Т. 100. № 3. С. 344-362.
  16. Жуковский Е.С. О возмущениях накрывающих отображений в пространствах с векторнозначной метрикой // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 2. С. 373-377.
  17. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений. М.: ЛИБРОКОМ, 2011. 224 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).