VOLTERRA OPERATOR INCLUSIONS IN THE THEORY OF GENERALIZED NEURAL FIELD MODELS WITH CONTROL. I

Cover Page

Cite item

Full Text

Abstract

We obtained conditions for solvability of Volterra operator inclusions and continuous dependence of the solutions on a parameter. These results were implemented to investigation of generalized neural field equations involving control.

About the authors

Evgenii Olegovich Burlakov

Norwegian University of Life Science

Email: eb_@bk.ru
graduate student As, Norway

References

  1. Shepherd G.M. The synaptic organization of the brain // Oxford university press. 2004.
  2. Lui J.H., Hansen D.V., Kriegstein A.R. Development and Evolution of the Human Neocortex // Cell. 2011. V. 146. № 1. P. 18-36.
  3. Swenson R.S. Review of clinical and functional neuroscience, In: Ed. G.L. Holmes, Educational Review Manual in Neurology. Castle Connolly Graduate Medical Publishing. 2006.
  4. Graben P.B., Kurths J. Simulating global properties of electroencephalograms with minimal random neural networks // Neurocomp. 2008. V. 71. № 4. P. 999-1007.
  5. Hopfield J.J. Neural networks and physical systems with emergent collective computational properties // Proc. Nat. Acad. Sci. 1982. V. 79. P. 2554-2558.
  6. Burlakov E., Zhukovskiy E., Ponosov A., Wyller J. Existence, uniqueness and continuous dependence on parameters of solutions to neural field equations // Memoirs on Differential Equations and Mathematical Physics. 2015. V. 65. P. 35-55.
  7. Amari S. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields // Biol. Cybern. 1977. V. 27. P. 77-87.
  8. Sompolinsky H., Shapley R. New perspectives on the mechanisms for orientation selectivity // Curr. Opin. Neurobiol. 1997. V. 5. P. 514-522.
  9. Taube J.S., Bassett J.P. Persistent neural activity in head direction cells // Cereb. Cortex. 2003. V. 13. P. 1162-1172.
  10. Fuster J.M., Alexander G. Neuron activity related to short-term memory // Science. 1971. V. 173. P. 652.
  11. Wang X-J. Synaptic reverberation underlying mnemonic persistent activity // Trends Neurosci. 2001. V. 24. P. 455-463.
  12. Pinotsis D.A., Leite M., Friston K.J. On conductance-based neural field models // Frontiers in Computational Neuroscience. 2013. V. 7. P. 158.
  13. Tass P.A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations // Biological cybernetics. 2003. V. 89. P. 81-88.
  14. Suffczynski P., Kalitzin S., and Lopes Da Silva F.H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network // Neuroscience. 2004. V. 126. P. 467-484.
  15. Kramer M.A., Lopour B.A., Kirsch H.E., and Szeri A.J. Bifurcation control of a seizing human cortex // Physical Review E. 2006. V. 73 :41928.
  16. Schiff S.J. Towards model-based control of Parkin- son’s disease // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. V. 368. P. 2269-2308.
  17. Ruths J., Taylor P., Dauwels J. Optimal Control of an Epileptic Neural Population Model // Proceedings of the International Federation of Automatic Control. Cape Town, 2014.
  18. Burlakov E., Zhukovskiy E.S. Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2015. T. 20. Вып. 1. С. 9-16.
  19. Burlakov E.O., Zhukovskiy E.S. On well-posedness of generalized neural field equations with impulsive control // Известия вузов. Математика. 2016 Т. 5. С. 75-79.
  20. Zhukovskiy E.S. Generalized Volterra operators in metric spaces // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2009. Т. 14. Вып. 3. С. 501-508.
  21. Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V. Introduction to the Theory of Multivalued Maps and Differential Inclusions. 2nd ed. Moscow: Librokom, 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).