FIRST APPLICATION OF GRANULAR HIERARCHICAL ZEOLITES X IN THE SYNTHESIS OF ANILINE FROM NITROBENZENE BY HYDROGEN TRANSFER METHOD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The catalytic properties of FAU zeolites with different porosity (microporous Na-X and granulated micro-me-so-macroporous Na-Xh, K-Na-Xh and CuO/Na-Xh) in the synthesis of aniline by the reaction of nitrobenzene with 2-propanol were studied for the first time. It was found that the maximum yield of aniline of 94% with almost complete conversion of nitrobenzene is observed on the CuO/Na-Xh catalyst (300°C, 20 wt. % catalyst, nitrobenzene : alcohol = 1 : 16 mol/mol, 5 h). The high activity and selectivity of the CuO/Na-Xh zeolite are due to its hierarchical porous structure, as well as the presence of the maximum number of "weak" and "medium" acid sites. Zeolite K-Na-Xh demonstrates the lowest selectivity for aniline and an increase in side reactions of acetone condensation, which is apparently associated with a decrease in the number of acidic sites and the appearance of basic sites.

About the authors

S. V Bubennow

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

Email: bubennov@list.ru
450075 Ufa, Russian Federation

A. S Artemieva

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

O. S Traukina

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

R. Z Kuvatova

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

N. A Philippova

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

N. G Grigorieva

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

B. I Kutepov

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences (INK UFRC RAS)

450075 Ufa, Russian Federation

References

  1. Lavanya K., Saranya J., Chitra S. // Corrosion Rev. 2018. V. 36. № 4. P. 365–371. https://doi.org/10.1515/CORRREV-2017-0129
  2. Kumar S., Bawa S., Gupta H. // Mini-Reviews in Med. Chem. 2009. V. 9. № 14. P. 1648–1654. https://doi.org/10.2174/138955709791012247
  3. Campbell J.W., McCullagh A.M., McGrath L., How C., MacLaren D.A., Loenders M., Meyer N., Carr R.H., Lennon D. // Appl. Catal. A. 2024. V. 670. P. 119541. https://doi.org/10.1016/j.apcata.2023.119541
  4. Wang C., Li J., Zhang F., Zhao Y., Xiao T. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1286–1305.
  5. Junge K., Wendt B., Belter M. // Chem. Commun. 2010. V. 46. № 10. P. 1769. https://doi.org/10.1039/B924228G
  6. Shi Q., Lu R., Lu L., Fu X., Dejeng Zh. // Adv. Synth. Catal. 2007. V. 349. № 11–12. P. 1877–1881. https://doi.org/10.1002/adsc.200700070
  7. Berthold H., Schotten T., Höing H. // Synthesis. 2002. № 11. P. 1607–1610. https://doi.org/10.1055/s-2002-33349
  8. Vermeiren W., Gilson J.-P. // Top. Catal. 2009. V. 52. № 9. P. 1131–1161.
  9. Sharma M., Das B., Hazarika A., Guha A.K., Bhargava S.K., Bania K.K. // ACS Appl. Nano Mater. 2019. V. 2. № 6. P. 3769–3779. https://doi.org/10.1021/acsanm.9b00653
  10. Kumaraja M., Pitchumani K. // Appl. Catal. A. 2004. V. 265. № 2. P. 135–139. https://doi.org/10.1016/j.apcata.2004.01.009
  11. Arya K., Dandia A. // J. Korean Chem. Soc. 2010. V. 54. № 1. P. 55–58. https://doi.org/10.5012/jkcs.2010.54.01.055
  12. Subramanian T., Pitchumani K. // ChemCatChem. 2012. V. 4. № 12. P. 1917–1921. https://doi.org/10.1002/cctc.201200443
  13. Zhang J., Wang L., Shao Y., Wang Y., Gates B.C., Xiao F.S. // Ang. Chem. Int. Ed. 2017. V. 56. № 33. P. 9747–9751. https://doi.org/10.1002/anie.201703938
  14. Mazaheri O., Kalbasi R.J. // RSC Adv. 2015. V. 5. № 43. P. 34398–34414. https://doi.org/10.1039/C5RA02349A
  15. Sun K., Shan H., Lu G-P., Cai C., Belter M. // Angew. Chem. Int. Ed. 2021. V. 60. № 48. P. 25188–25202. https://doi.org/10.1002/anie.202104979
  16. Wang X., Wang G., Shen D., Fu Ch., Wei M. // Zeolites. 1991. V. 11. № 3. P. 254–257. https://doi.org/10.1016/S0144-2449(05)80228-3
  17. Potapenko O.V., Doronin V.P., Sorokina T.P., Likholobov VA. // Russ. Chem. Rev. 2023. V. 92. № 1. P. RCK5065. https://doi.org/10.57634/RCR5065
  18. Formenti D., Ferretti F., Scharnagl F.K., Belter M. // Chem. Rev. 2019. V. 119. № 4. P. 2611–2680. https://doi.org/10.1021/acs.chemrev.8b00547
  19. Гордон А. Спутник химика М.: Мир, 1976. 438 с.
  20. Бодрый А.Б., Усманов И.Ф., Рахматуллин Э.М., Тагиров А.Ш., Илибаев Р.С., Суркова Л.В., Кислинки Р.А. Способ получения гранулированного цеолита типа X без связующих веществ. Патент РФ № 2653033. 2018.
  21. Gregg S.J., Sing K.S. Adsorption, surface area, and porosity. London: Academic Press, 1995. 371 p.
  22. Stothers J.B. Carbon-13 NMR Spectroscopy. New York: Academic Press, 1972. 560 p.
  23. Григорьева Н.Г., Филиппова Н.А., Гатаулин А.Р., Бубеннов С.В., Аглиуллин М.Р., Кутепов Б.И., Нарендер Н.//Изв. АН. Сер. хим. 2017. № 11. С. 2115–2121. EDN: ZUQJWH https://doi.org/10.1007/s11172-017-1989-z
  24. Gliński M. // Appl. Catal. A. 2008. V. 349. P. 133–139. https://doi.org/10.1016/j.apcata.2008.07.018
  25. Shimizu K.-i., Kon K., Onodera W., Yamazaki H., Kondo J.N. // ACS Catal. 2013. V. 3. № 1. P. 112–117. https://doi.org/10.1021/cs3007473
  26. Verdoliva V., Saviano M., De Luca S. // Catalysts. 2019. V. 9. № 3. P. 248. https://doi.org/10.3390/catal9030248
  27. Calorimetry and thermal methods in catalysis. V. 154. Auroux A. (ed.). Berlin: Springer, 2013. 569 p.
  28. Bazyari A., Khodadadi A.A., Hosseinpour N., Mortazavi Y. // Fuel Process. Technol. 2009. V. 90. № 10. P. 1226–1233. https://doi.org/10.1016/j.fuproc.2009.06.002
  29. Lezcano-Gonzalez I., Deka U., Arstad B., Van Yperen-De Deyne A., Hemelsoer K., Waroquier M., Van Speybroeck V., Weekhuisen B.M., Beale A.M. // Chem. Phys. 2014. V. 16. № 4. P. 1639–1650. https://doi.org/10.1039/C3CP54132K
  30. Maćkiewicz E., Szynkowska M.I. // React. Kinet. Mech. Catal. 2014. V. 111. № 2. P. 763–773. https://doi.org/10.1007/s11144-013-0666-y
  31. Wang F., Yu Z., Wei X., Wu Z., Liu N., Xu J., Xue B., Li G. // Catal. Lett. 2022. V. 152. P. 3669–3678. https://doi.org/10.1007/s10562-022-03934-3
  32. Tamura M., Yonezawa D., Oshino T., Nakagawa Y., Tomishige K. // ACS Catal. 2017. V. 7. № 5. P. 5103–5111. https://doi.org/10.1021/acscatal.7b01055
  33. Guisnet M., Pinard L. // Catal. Rev. 2018. V. 60. № 76. P. 337–436. https://doi.org/10.1080/01614940.2018.1446683
  34. Siddiki H.S.M.A., Toyao T., Shimizu K. // Green Chem. 2018. V. 20. № 13. P. 2933–2952. https://doi.org/10.1039/C8GC00451J
  35. Bruneau C. Dehydrogenation of alcohols using transition metal catalysts: History and applications. In: Dehydrogenation reactions with 3d metals. Topics in organometallic chem. V. 73. Sundararaju B. (ed.). Cham: Springer, 2023. https://doi.org/10.1007/3418_2023_107
  36. Zhang M.-J., Ge X.-L., Young D., Li H.-X. // Tetrahedron. 2021. V. 93. P. 132309. https://doi.org/10.1016/j.tet.2021.132309
  37. Nachtigall P., Delgado M., Nachrigallová D., Areán C. // Chem. Phys. 2012. V. 14. № 5. P. 1552–1569. https://doi.org/10.1039/c2cp232376
  38. Кирсанов В.Ю., Коржова Л.Ф., Карчевски С.И., Хазипова А.Н., Кутепов Б.И., Григорьева Б.И., Григорьева Н.Г. // Нефтехимия. 2025. Т. 65. № 4. P. 1–11. https://doi.org/10.1134/S0965544125600663
  39. Lauron-Pernot H. // ChemInform. 2006. V. 37. № 45. P. 315–361. https://doi.org/10.1002/chin.200645226
  40. Morales M.V., Asedegbega-Nieto E., Bachiller-Baeza B., Guerrero-Ruiz A. // Carbon. 2016. V. 102. P. 426–436. https://doi.org/10.1016/j.carbon.2016.02.089
  41. Pischetola Ch., Collado L., Aguado-Molina R., Martin-Trecerio S., Keane M.A., Cárdenas-Lizana F. // Mol. Catal. 2020. V. 492. P. 110912. https://doi.org/10.1016/j.mcat.2020.110912

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).