Comparison of oxygen status and eye tracking parameters in patients with mild isolated traumatic brain injury: a preliminary study

Cover Page

Cite item

Abstract

the aim of this study was to evaluate the relationship between oculomotor synergies and brain oxygen status in mild traumatic brain injury (mTBI) using a simultaneous comparison of eye tracking (ET) and cerebral oxygenation parameters. Materials and methods. This non-randomized, single-center prospective study included 77 patients with mTBI (mean age 36.3 ± 4.8 years, 48 men, 29 women, median Glasgow Coma Scale 13.7 ± 0.7). Cerebral oximetry was used to determine the oxygen saturation level (SctO2) in the frontal lobe pole region (FLP). Eye movements were measured simultaneously using EyeTracker. The calculated parameters were: vertical and horizontal angular velocity of the eyeball (VA); left vertical angular velocity (LVAV); right vertical angular velocity (RVAV); left horizontal angular velocity (LHAV); and right horizontal angular velocity (RHAV). The vertical and horizontal ocular vergence reactivity index (VRx) were calculated as the Pearson’s correlation coefficient between the corresponding angular velocities of the right and left eyes. Significance was preset at p < 0.05. Results. SctO2 in FLP ranged from 62% to 79. The mean SctO2 values were 69.26 ± 6.96% compared to the left FLP and 70.25 ± 7.58% compared to the right FLP (p = 0.40). Overall analysis of the eye tracking data revealed the following eye tracking parameter values: LVAV 0.327 ± 0.263 rad/sec; LHAV 0.201 ± 0.164 rad/sec; RVAV 0.361±0.269 rad/sec; and RHAV 0.197±0.124 rad/sec. The estimated vertical vergence reactivity index (VVx) was 0.80±0.12. The estimated horizontal vergence reactivity index (HVx) was 0.82±0.11. VVx and HVx correlated with SctO2 levels in the corresponding LPD (p=0.038; r=0.235; p=0.048; r=0.218, respectively, p=0.035; r=0.241; p=0.039; r=0.235, respectively). Conclusions. VVx and HVx correlate with SctO2 level in FLP (p<0.01) in mTBI. No significant correlation was found between SctO2 levels and vertical and horizontal angular velocities of the eyeballs. ET may help to quantify the severity of ocular movement disturbances after mTBI and to study the contribution of cerebral oxygenation impairment to this process.

About the authors

A. O Trofimov

Privolzhsky Research Medical University; Saratov State University; Clinic "Persona", Nizhny Novgorod

N. A Eremina

Clinic "Persona", Nizhny Novgorod; Lobachevsky State University щa Nizhny Novgorod

K. A Trofimova

Privolzhsky Research Medical University

G. V Kalentev

City Clinical Hospital №10, Nizhny Novgorod

D. E Bragin

University of New Mexico School of Medicine, Albuquerque, USA; Lovelace Biomedical Research Institute, Albuquerque, NM, USA.

F. A Sevryukov

Privolzhsky Research Medical University

Email: fedor_sevryukov@mail.ru
ORCID iD: 0000-0001-5120-2620

References

  1. Astafiev S.V., Shulman G.L., Metcalf N.V. et al. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury // Journal of neurotrauma. 2015. № 32 (16). P. 1254 – 1271.
  2. Murray N.P., Claire-Marie Roberts M.H., Tyagi A. et al. Oculomotor Training for Poor Saccades Improves Functional Vision Scores and Neurobehavioral Symptoms // Archives of Rehabilitation Research and Clinical Translation. 2021. № 3:2. P. 100126.
  3. Hunfalvay M., Roberts C., Murray N. et al. Horizontal and vertical self-paced saccades as a diagnostic marker of traumatic brain injury // Concussion (London, England). 2019. № 4 (1). P. CNC60.
  4. Cifu D.X., Wares J.R., Hoke K.W. et al. Differential eye movements in mild traumatic brain injury versus normal controls // J. Head Trauma Rehabil. 2015. № 30 (1). P. 21 – 28. 5.Trofimov A.O., Kalentiev G., Voennov O. et al. Comparison of Cerebral Oxygen Saturation and Cerebral Perfusion Computed Tomography in Cerebral Blood Flow in Patients with Brain Injury // Advances in experimental medicine and biology. 2016. № 876. P. 145 – 149.
  5. Клинические рекомендации “Сотрясение головного мозга”. 2022. https://ruans.org/Text/Guidelines/concussion-2022.pdf
  6. Contreras R., Ghajar J., Bahar S. et al. Effect of cognitive load on eye-target synchronization during smooth pursuit eye movement // Brain Res. 2011. № 1398 (29). P. 55 – 63.
  7. Sussman E., Ho A., Pendharkar A., Ghajar J. Clinical evaluation of concussion: the evolving role of oculomotor assessments // Neurosurg. Focus. 2016. № 40 (4). P. E7.
  8. Piper C., Fortune B., Cull G. et al. Basal blood flow and autoregulation changes in the optic nerve of rhesus monkeys with idiopathic bilateral optic atrophy // Investigative ophthalmology & visual science. 2013. № 54 (1). P. 714 – 721.
  9. Wetzel P., Lindblad A., Mulatya C. et al. Eye tracker outcomes in a randomized trial of 40 sessions of hyperbaric oxygen or sham in participants with persistent post concussive symptoms // Undersea & hyperbaric medicine Journal of the Undersea and Hyperbaric Medical Society. 2019. Inc. № 46 (3). P. 299 – 311.
  10. Wagner M., den Boer M., Jansen S. et al. Video-based reflection on neonatal interventions during COVID-19 using eye-tracking glasses: an observational study // Archives of disease in childhood. Fetal and neonatal edition. 2022. № 107 (2). P. 156 – 160.
  11. Pei?l S., Wickens D., Baruah R. (2018) Eye-Tracking Measures in Aviation: A Selective Literature Review // The International Journal of Aerospace Psychology. 2028. № 28 (3-4). P. 98 – 112.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).