Ферментированный нут (Cicer arietinum L.) как функциональный продукт: не содержащие мясо «веганские» бургеры
- Авторы: Мохамед Р.М.1, Али М.Р.1
-
Учреждения:
- Кафедра науки о питании, Сельскохозяйственный факультет, Каирский Университет
- Выпуск: Том 8, № 1 (2025)
- Страницы: 93-98
- Раздел: Статьи
- URL: https://ogarev-online.ru/2618-9771/article/view/310380
- DOI: https://doi.org/10.21323/2618-9771-2025-8-1-93-98
- ID: 310380
Цитировать
Полный текст
Аннотация
Глобальный спрос на этичные, экологичные и питательные пищевые продукты усилил интерес к растительным альтернативам мясу. Ученые и производители пищевых продуктов уделяют первостепенное внимание разработке превосходных альтернатив мясным и молочным продуктам из-за увеличивающейся популярности вегетарианских и веганских диет среди потребителей. Нут — бобовый источник белка, содержащий большое количество белка и пищевых волокон, а также грибы богаты химическими веществами «умами» и потенциально могут быть исключительно важными ингредиентами в растительных альтернативах мясным продуктам. Пищевой профиль и сенсорные характеристики растительных продуктов могут быть улучшены в результате ферментации — традиционного метода, широко используемого при производстве пищевых продуктов. Этот процесс может повысить привлекательность этих продук тов для потребителей. В этой связи, целью данного исследования было создание нового продукта из растительных источников, который заменил бы мясные продукты. Нут был ферментирован Aspergillus oryzae (AUMC B2) в течение различных периодов ферментации (7, 10 и 14 дней) для определения оптимального времени ферментации для усиления вкуса умами (мясного вкуса). Нут и грибы были основным растительным сырьем для растительных бургеров. Для приготовления бургеров был использован ферментированный нут с разным периодом ферментации (7 дней: FC7, 10 дней: FC10, и 14 дней: FC14). Сенсорые показатели веганских бургеров сравнивали с таковыми неферментированного контрольного образца. Результаты показали, что образцы не содержащих мясо бургеров FC10 получили наивысший балл вкуса и запаха по сравнению с контролем. На основании этих результатов был проведен химический анализ для не содержащих мясо продукта FC10 и контроля. Полученные данные показали, что процесс ферментации повышал содержание белка и снижал содержание жиров и углеводов в ферментированном, не содержащем мясо бургере.
Ключевые слова
Об авторах
Р. М. Мохамед
Кафедра науки о питании, Сельскохозяйственный факультет, Каирский Университет
Автор, ответственный за переписку.
Email: marwa3mrf@agr.cu.edu.eg
12613, Гиза, ул. Гамаа, 1
М. Р. Али
Кафедра науки о питании, Сельскохозяйственный факультет, Каирский Университет
Email: marwa3mrf@agr.cu.edu.eg
12613, Гиза, ул. Гамаа, 1
Список литературы
- Llonch, P., Haskell, M. J., Dewhurst, R. J., Turner, S. P. (2017). Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 11(2), 274–284. https://doi.org/10.1017/s1751731116001440
- Uwizeye, A., de Boer, I. J., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G. et al. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1(7), 437–446. https://doi.org/10.1038/s43016-020-0113-y
- Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452
- Ojediran, T. K., Olofintuyi, O. S., Ojediran, T. J. (2024). Alternative feed resources in the era of climate change: A review. Aceh Journal of Animal Science, 9(3), 98–110. https://doi.org/10.13170/ajas.9.3.37655
- Đekić, I., Tomašević, I. (October 1–4, 2017). Environmental footprints in the meat chain. IOP Conference Series: Earth and Environmental Science. 59th International Meat Industry Conference MEATCON2017, Zlatibor, Serbia. IOP Publishing, 2017. https://doi.org/10.1088/1755-1315/85/1/012015
- Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227
- National Academies of Sciences, Engineering, and Medicin. (2019). Science breakthroughs to advance food and agricultural research by 2030. National Academies Press, 2019. https://doi.org/10.17226/25059
- IARC Monographs. (2018). Red meat and processed meat / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, 2018.
- Xiao, X., Zou, P.-R., Hu, F., Zhu, W., Wei, Z.-J. (2023). Updates on plant-based protein products as an alternative to animal protein: Technology, properties, and their health benefits. Molecules, 28(10), Article 4016. https://doi.org/10.3390/molecules28104016
- Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4), 320–329. https://doi.org/10.1016/j.fshw.2019.11.006
- Bakhsh, A., Lee, S.-J., Lee, E.-Y., Sabikun, N., Hwang, Y.-H., Joo, S.-T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), Article 560. https://doi.org/10.3390/foods10030560
- 12.Yegrem, L. (2021). Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.). International Journal of Food Science, 2021(1), Article 5570753. https://doi.org/10.1155/2021/5570753
- Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, Article 100520. https://doi.org/10.1016/j.gfs.2021.100520
- Begum, N., Khan, Q. U., Liu, L. G., Li, W., Liu, D., Haq, I. U. (2023). Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10, Article 1218468. https://doi.org/10.3389/fnut.2023.1218468
- Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
- Finnigan, T. J. A., Theobald, H. E., Bajka, B. (2024). Mycoprotein: A healthy and sustainable source of alternative protein-based foods. Annual Review of Food Science and Technology, 16. https://doi.org/10.1146/annurev-food‑111523-121802
- Farid, M. S., Anjum, R., Yang, Y., Tu, M., Zhang, T., Pan, D. et al. (2024). Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends in Food Science and Technology, 149, Article 104529. https://doi.org/10.1016/j.tifs.2024.104529
- Boukid, F., Hassoun, A., Zouari, A., Tülbek, M. Ç., Mefleh, M., Aït-Kaddour, A. et al. (2023). Fermentation for designing innovative plant-based meat and dairy alternatives. Foods, 12(5), Article 1005. https://doi.org/10.3390/foods12051005
- Mohamed, D. E., Alian, A. M., Mohamed, R. M. (2024). Optimization of production and evaluation of Microbial kojic Acid obtained from Sugarcane Molasses (SCM) by Aspergillus sp. Food Systems, 7(1), 71–76. https://doi.org/10.21323/2618-9771-2024-7-1-71-76
- AOAC (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, MD: Gaithersburg, MD, USA
- Mohamed, R. M., Bazaraa, W. A., Alian, A. M., El-Shimi, N. M. (2021). New application of microbial l-glutaminase as a flavor enhancing agent in beef burgers. Theory and Practice of Meat Processing, 6(4), 375–380. https://doi.org/10.21323/2414-438x‑2021-6-4-375-380
- El-Beltagi, H. S., El-Mogy, M. M., Parmar, A., Mansour, A. T., Shalaby, T. A., Ali, M. R. (2022). Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peels extract in maintaining the quality of nile tilapia fish fillet. Antioxidants, 11(5), Article 906. https://doi.org/10.3390/antiox11050906
- Grasso, N., Lynch, N. L., Arendt, E. K., O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878
- Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S. et al. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, Article 103306. https://doi.org/10.1016/j.jfca.2019.103306
- Ereifej, K. I., Al-Karaki, G. N., Hammouri, M. K. (2001). Seed chemical composition of improved chickpea cultivars grown under semiarid Mediterranean conditions. International Journal of Food Properties, 4(2), 239–246. https://doi.org/10.1081/jfp‑100105190
- Xiao, S., Li, Z., Zhou, K., Fu, Y. (2023). Chemical composition of kabuli and desi chickpea (Cicer arietinum L.) cultivars grown in Xinjiang, China. Food Science and Nutrition, 11(1), 236–248. https://doi.org/10.1002/fsn3.3056
- Krüzselyi, D., Kovács, D., Vetter, J. (2016). Chemical analysis of king oyster mushroom (Pleurotus eryngii) fruitbodies. Acta Alimentaria, 45(1), 20–27. https://doi.org/10.1556/066.2016.45.1.3
- Oluwafemi, G. I., Seidu, K. T., Fagbemi, T. N. (2016). Chemical composition, functional properties and protein fractionation of edible oyster mushroom (Pleurotus ostreatus). Annals: Food Science and Technology, 17(1), 218–223.
- Fukagawa, N. K., Yu, Y. -M. (2009). Nutrition and metabolism of proteins and amino acids. Chapter in a book: Introduction to Human Nutrition. A John Wiley and Sons, 2009.
- Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100, 437S‑442S. https://doi.org/10.3945/ajcn.113.071472
- Melina, V., Craig, W., Levin, S. (2016). Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025
- Leser, S. (2013). The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutrition Bulletin, 38(4), 421–428. https://doi.org/10.1111/nbu.12063
- Senanayake, D., Torley, P. J., Chandrapala, J., Terefe, N. S. (2023). Microbial fermentation for improving the sensory, nutritional and functional attributes of legumes. Fermentation, 9(7), Article 635. https://doi.org/10.3390/fermentation9070635
- Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., Schutyser, M. A. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies, 59, Article 102269. https://doi.org/10.1016/j.ifset.2019.102269
- De Pasquale, I., Verni, M., Verardo, V., Gómez-Caravaca, A. M., Rizzello, C. G. (2021). Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods, 10(1), Article 182. https://doi.org/10.3390/foods10010182
- Sáez, G. D., Sabater, C., Fara, A., Zárate, G. (2022). Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. Journal of Applied Microbiology, 133(1), 181–199. https://doi.org/10.1111/jam.15401
- Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, 112453. https://doi.org/10.1016/j.foodres.2022.112453
- Xiao, Y., Huang, L., Chen, Y., Zhang, S., Rui, X., Dong, M. (2016). Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CyTA-Journal of Food, 14(4), 621–631. https://doi.org/10.1080/19476337.2016.1188157
- Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, Article 112453. https://doi.org/10.1016/j.foodres.2022.112453
- Kumitch, H. M., Stone, A., Nosworthy, M. G., Nickerson, M. T., House, J. D., Korber, D. R. et al. (2020). Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry, 97(1), 104–113. https://doi.org/10.1002/cche.10234
- Lee, Y. H., Lee, N. R., Lee, C. H. (2022). Comprehensive metabolite profiling of four different beans fermented by Aspergillus oryzae. Molecules, 27(22), Article 7917. https://doi.org/10.3390/molecules27227917
- Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as Strategy for Improving Nutritional, Functional, Technological, and Sensory Properties of Legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
- Alrosan, M., Tan, T. C., Koh, W. Y., Easa, A. M., Gammoh, S., Alu’datt, M. H. (2023). Overview of fermentation process: Structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Critical Reviews in Food Science and Nutrition, 63(25), 7677–7691. https://doi.org/10.1080/10408398.2022.2049200
- Razavizadeh, S., Alencikiene, G., Salaseviciene, A., Vaiciulyte-Funk, L., Ertbjerg, P., Zabulione, A. (2021). Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247(9), 2379–2389. https://doi.org/10.1007/s00217-021-03798-8
- Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
- Akram, S., Afzal, M. F., Anwer, K., Farman, L., Zubair, M., Kousar, S. et al. (2024). Nutraceutical properties, biological activities, and industrial applications of chickpea protein. Cogent Food and Agriculture, 10(1), Article 2338653. https://doi.org/10.1080/23311932.2024.2338653
- Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products — Insight and challenges. Foods, 11(7), Article 957. https://doi.org/10.3390/foods11070957
- Szenderák, J., Fróna, D., Rákos, M. (2022). Consumer acceptance of plant-based meat substitutes: A narrative review. Foods, 11(9), Article 1274. https://doi.org/10.3390/foods11091274
- Cordelle, S., Redl, A., Schlich, P. (2022). Sensory acceptability of new plant protein meat substitutes. Food Quality and Preference, 98, Article 104508. https://doi.org/10.1016/j.foodqual.2021.104508
Дополнительные файлы
