Fermented chickpea (Cicer arietinum L.) as a functional food: Meatless “vegan” burgers

Cover Page

Cite item

Full Text

Abstract

The global desire for ethical, sustainable, and nutritional food choices has intensified interest in plant-based meat alternatives. Researchers and food manufacturers have prioritized the development of superior alternatives to meat and dairy products due to the increasing popularity of vegetarian and vegan diets among consumers. Chickpeas, a leguminous source abundant in protein and fiber, and mushrooms are rich in umami chemicals and can potentially be essential ingredients in plant-based meat products. Plant-based foods’ nutritional profile and sensory attributes can be improved through fermentation, a conventional method frequently employed in food production. This process can increase the allure of these foods to consumers. Therefore, this research aims to create a new product from plant sources that substitutes for meat products. The chickpea was fermented by Aspergillus oryzae (AUMC B2) for different fermentation periods (7, 10, and 14 days) to determine the optimum fermentation time to enhance the umami taste (meat flavor). Chickpeas and mushrooms were the primary raw materials for plant-based burgers. Fermented chickpeas were used to prepare vegan burgers at different fermentation times (7 days: FC7, 10 days: FC10, and 14 days: FC14). The sensory attributes of vegan burgers were compared to those of the nonfermented control sample. The results showed that the samples of FC10 meatless burgers recorded the highest score of taste and odor compared to the control. Based on these results, a chemical analysis was conducted for the meatless product FC10 and its control. The findings showed that the fermentation process increased the protein content and decreased the content of fats and carbohydrates in the fermented meatless burger.

About the authors

R. M. Mohamed

Department of Food Science, Faculty of Agriculture, Cairo University

Author for correspondence.
Email: marwa3mrf@agr.cu.edu.eg
Reda M. Mohamed is affiliated with the Department of Food Science at the Faculty of Agriculture, Cairo University. 1 Gamaa Street, 12613, Giza

M. R. Ali

Department of Food Science, Faculty of Agriculture, Cairo University

Email: marwa3mrf@agr.cu.edu.eg
Department of Food Science, Faculty of Agriculture, Cairo University. 1 Gamaa Street, 12613, Giza

References

  1. Llonch, P., Haskell, M. J., Dewhurst, R. J., Turner, S. P. (2017). Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 11(2), 274–284. https://doi.org/10.1017/s1751731116001440
  2. Uwizeye, A., de Boer, I. J., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G. et al. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1(7), 437–446. https://doi.org/10.1038/s43016-020-0113-y
  3. Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452
  4. Ojediran, T. K., Olofintuyi, O. S., Ojediran, T. J. (2024). Alternative feed resources in the era of climate change: A review. Aceh Journal of Animal Science, 9(3), 98–110. https://doi.org/10.13170/ajas.9.3.37655
  5. Đekić, I., Tomašević, I. (October 1–4, 2017). Environmental footprints in the meat chain. IOP Conference Series: Earth and Environmental Science. 59th International Meat Industry Conference MEATCON2017, Zlatibor, Serbia. IOP Publishing, 2017. https://doi.org/10.1088/1755-1315/85/1/012015
  6. Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227
  7. National Academies of Sciences, Engineering, and Medicin. (2019). Science breakthroughs to advance food and agricultural research by 2030. National Academies Press, 2019. https://doi.org/10.17226/25059
  8. IARC Monographs. (2018). Red meat and processed meat / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, 2018.
  9. Xiao, X., Zou, P.-R., Hu, F., Zhu, W., Wei, Z.-J. (2023). Updates on plant-based protein products as an alternative to animal protein: Technology, properties, and their health benefits. Molecules, 28(10), Article 4016. https://doi.org/10.3390/molecules28104016
  10. Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4), 320–329. https://doi.org/10.1016/j.fshw.2019.11.006
  11. Bakhsh, A., Lee, S.-J., Lee, E.-Y., Sabikun, N., Hwang, Y.-H., Joo, S.-T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), Article 560. https://doi.org/10.3390/foods10030560
  12. Yegrem, L. (2021). Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.). International Journal of Food Science, 2021(1), Article 5570753. https://doi.org/10.1155/2021/5570753
  13. Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, Article 100520. https://doi.org/10.1016/j.gfs.2021.100520
  14. Begum, N., Khan, Q. U., Liu, L. G., Li, W., Liu, D., Haq, I. U. (2023). Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10, Article 1218468. https://doi.org/10.3389/fnut.2023.1218468
  15. Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
  16. Finnigan, T. J. A., Theobald, H. E., Bajka, B. (2024). Mycoprotein: A healthy and sustainable source of alternative protein-based foods. Annual Review of Food Science and Technology, 16. https://doi.org/10.1146/annurev-food‑111523-121802
  17. Farid, M. S., Anjum, R., Yang, Y., Tu, M., Zhang, T., Pan, D. et al. (2024). Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends in Food Science and Technology, 149, Article 104529. https://doi.org/10.1016/j.tifs.2024.104529
  18. Boukid, F., Hassoun, A., Zouari, A., Tülbek, M. Ç., Mefleh, M., Aït-Kaddour, A. et al. (2023). Fermentation for designing innovative plant-based meat and dairy alternatives. Foods, 12(5), Article 1005. https://doi.org/10.3390/foods12051005
  19. Mohamed, D. E., Alian, A. M., Mohamed, R. M. (2024). Optimization of production and evaluation of Microbial kojic Acid obtained from Sugarcane Molasses (SCM) by Aspergillus sp. Food Systems, 7(1), 71–76. https://doi.org/10.21323/2618-9771-2024-7-1-71-76
  20. AOAC (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, MD: Gaithersburg, MD, USA
  21. Mohamed, R. M., Bazaraa, W. A., Alian, A. M., El-Shimi, N. M. (2021). New application of microbial l-glutaminase as a flavor enhancing agent in beef burgers. Theory and Practice of Meat Processing, 6(4), 375–380. https://doi.org/10.21323/2414-438x‑2021-6-4-375-380
  22. El-Beltagi, H. S., El-Mogy, M. M., Parmar, A., Mansour, A. T., Shalaby, T. A., Ali, M. R. (2022). Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peels extract in maintaining the quality of nile tilapia fish fillet. Antioxidants, 11(5), Article 906. https://doi.org/10.3390/antiox11050906
  23. Grasso, N., Lynch, N. L., Arendt, E. K., O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878
  24. Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S. et al. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, Article 103306. https://doi.org/10.1016/j.jfca.2019.103306
  25. Ereifej, K. I., Al-Karaki, G. N., Hammouri, M. K. (2001). Seed chemical composition of improved chickpea cultivars grown under semiarid Mediterranean conditions. International Journal of Food Properties, 4(2), 239–246. https://doi.org/10.1081/jfp‑100105190
  26. Xiao, S., Li, Z., Zhou, K., Fu, Y. (2023). Chemical composition of kabuli and desi chickpea (Cicer arietinum L.) cultivars grown in Xinjiang, China. Food Science and Nutrition, 11(1), 236–248. https://doi.org/10.1002/fsn3.3056
  27. Krüzselyi, D., Kovács, D., Vetter, J. (2016). Chemical analysis of king oyster mushroom (Pleurotus eryngii) fruitbodies. Acta Alimentaria, 45(1), 20–27. https://doi.org/10.1556/066.2016.45.1.3
  28. Oluwafemi, G. I., Seidu, K. T., Fagbemi, T. N. (2016). Chemical composition, functional properties and protein fractionation of edible oyster mushroom (Pleurotus ostreatus). Annals: Food Science and Technology, 17(1), 218–223.
  29. Fukagawa, N. K., Yu, Y. -M. (2009). Nutrition and metabolism of proteins and amino acids. Chapter in a book: Introduction to Human Nutrition. A John Wiley and Sons, 2009.
  30. Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100, 437S‑442S. https://doi.org/10.3945/ajcn.113.071472
  31. Melina, V., Craig, W., Levin, S. (2016). Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025
  32. Leser, S. (2013). The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutrition Bulletin, 38(4), 421–428. https://doi.org/10.1111/nbu.12063
  33. Senanayake, D., Torley, P. J., Chandrapala, J., Terefe, N. S. (2023). Microbial fermentation for improving the sensory, nutritional and functional attributes of legumes. Fermentation, 9(7), Article 635. https://doi.org/10.3390/fermentation9070635
  34. Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., Schutyser, M. A. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies, 59, Article 102269. https://doi.org/10.1016/j.ifset.2019.102269
  35. De Pasquale, I., Verni, M., Verardo, V., Gómez-Caravaca, A. M., Rizzello, C. G. (2021). Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods, 10(1), Article 182. https://doi.org/10.3390/foods10010182
  36. Sáez, G. D., Sabater, C., Fara, A., Zárate, G. (2022). Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. Journal of Applied Microbiology, 133(1), 181–199. https://doi.org/10.1111/jam.15401
  37. Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, 112453. https://doi.org/10.1016/j.foodres.2022.112453
  38. Xiao, Y., Huang, L., Chen, Y., Zhang, S., Rui, X., Dong, M. (2016). Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CyTA-Journal of Food, 14(4), 621–631. https://doi.org/10.1080/19476337.2016.1188157
  39. Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, Article 112453. https://doi.org/10.1016/j.foodres.2022.112453
  40. Kumitch, H. M., Stone, A., Nosworthy, M. G., Nickerson, M. T., House, J. D., Korber, D. R. et al. (2020). Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry, 97(1), 104–113. https://doi.org/10.1002/cche.10234
  41. Lee, Y. H., Lee, N. R., Lee, C. H. (2022). Comprehensive metabolite profiling of four different beans fermented by Aspergillus oryzae. Molecules, 27(22), Article 7917. https://doi.org/10.3390/molecules27227917
  42. Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as Strategy for Improving Nutritional, Functional, Technological, and Sensory Properties of Legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
  43. Alrosan, M., Tan, T. C., Koh, W. Y., Easa, A. M., Gammoh, S., Alu’datt, M. H. (2023). Overview of fermentation process: Structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Critical Reviews in Food Science and Nutrition, 63(25), 7677–7691. https://doi.org/10.1080/10408398.2022.2049200
  44. Razavizadeh, S., Alencikiene, G., Salaseviciene, A., Vaiciulyte-Funk, L., Ertbjerg, P., Zabulione, A. (2021). Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247(9), 2379–2389. https://doi.org/10.1007/s00217-021-03798-8
  45. Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
  46. Akram, S., Afzal, M. F., Anwer, K., Farman, L., Zubair, M., Kousar, S. et al. (2024). Nutraceutical properties, biological activities, and industrial applications of chickpea protein. Cogent Food and Agriculture, 10(1), Article 2338653. https://doi.org/10.1080/23311932.2024.2338653
  47. Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products — Insight and challenges. Foods, 11(7), Article 957. https://doi.org/10.3390/foods11070957
  48. Szenderák, J., Fróna, D., Rákos, M. (2022). Consumer acceptance of plant-based meat substitutes: A narrative review. Foods, 11(9), Article 1274. https://doi.org/10.3390/foods11091274
  49. Cordelle, S., Redl, A., Schlich, P. (2022). Sensory acceptability of new plant protein meat substitutes. Food Quality and Preference, 98, Article 104508. https://doi.org/10.1016/j.foodqual.2021.104508

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Mohamed R.M., Ali M.R.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».