Fermented chickpea (Cicer arietinum L.) as a functional food: Meatless “vegan” burgers
- Authors: Mohamed R.M.1, Ali M.R.1
-
Affiliations:
- Department of Food Science, Faculty of Agriculture, Cairo University
- Issue: Vol 8, No 1 (2025)
- Pages: 93-98
- Section: Articles
- URL: https://ogarev-online.ru/2618-9771/article/view/310380
- DOI: https://doi.org/10.21323/2618-9771-2025-8-1-93-98
- ID: 310380
Cite item
Full Text
Abstract
The global desire for ethical, sustainable, and nutritional food choices has intensified interest in plant-based meat alternatives. Researchers and food manufacturers have prioritized the development of superior alternatives to meat and dairy products due to the increasing popularity of vegetarian and vegan diets among consumers. Chickpeas, a leguminous source abundant in protein and fiber, and mushrooms are rich in umami chemicals and can potentially be essential ingredients in plant-based meat products. Plant-based foods’ nutritional profile and sensory attributes can be improved through fermentation, a conventional method frequently employed in food production. This process can increase the allure of these foods to consumers. Therefore, this research aims to create a new product from plant sources that substitutes for meat products. The chickpea was fermented by Aspergillus oryzae (AUMC B2) for different fermentation periods (7, 10, and 14 days) to determine the optimum fermentation time to enhance the umami taste (meat flavor). Chickpeas and mushrooms were the primary raw materials for plant-based burgers. Fermented chickpeas were used to prepare vegan burgers at different fermentation times (7 days: FC7, 10 days: FC10, and 14 days: FC14). The sensory attributes of vegan burgers were compared to those of the nonfermented control sample. The results showed that the samples of FC10 meatless burgers recorded the highest score of taste and odor compared to the control. Based on these results, a chemical analysis was conducted for the meatless product FC10 and its control. The findings showed that the fermentation process increased the protein content and decreased the content of fats and carbohydrates in the fermented meatless burger.
About the authors
R. M. Mohamed
Department of Food Science, Faculty of Agriculture, Cairo University
Author for correspondence.
Email: marwa3mrf@agr.cu.edu.eg
Reda M. Mohamed is affiliated with the Department of Food Science at the Faculty of Agriculture, Cairo University. 1 Gamaa Street, 12613, Giza
M. R. Ali
Department of Food Science, Faculty of Agriculture, Cairo University
Email: marwa3mrf@agr.cu.edu.eg
Department of Food Science, Faculty of Agriculture, Cairo University. 1 Gamaa Street, 12613, Giza
References
- Llonch, P., Haskell, M. J., Dewhurst, R. J., Turner, S. P. (2017). Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 11(2), 274–284. https://doi.org/10.1017/s1751731116001440
- Uwizeye, A., de Boer, I. J., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G. et al. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1(7), 437–446. https://doi.org/10.1038/s43016-020-0113-y
- Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452
- Ojediran, T. K., Olofintuyi, O. S., Ojediran, T. J. (2024). Alternative feed resources in the era of climate change: A review. Aceh Journal of Animal Science, 9(3), 98–110. https://doi.org/10.13170/ajas.9.3.37655
- Đekić, I., Tomašević, I. (October 1–4, 2017). Environmental footprints in the meat chain. IOP Conference Series: Earth and Environmental Science. 59th International Meat Industry Conference MEATCON2017, Zlatibor, Serbia. IOP Publishing, 2017. https://doi.org/10.1088/1755-1315/85/1/012015
- Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227
- National Academies of Sciences, Engineering, and Medicin. (2019). Science breakthroughs to advance food and agricultural research by 2030. National Academies Press, 2019. https://doi.org/10.17226/25059
- IARC Monographs. (2018). Red meat and processed meat / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, 2018.
- Xiao, X., Zou, P.-R., Hu, F., Zhu, W., Wei, Z.-J. (2023). Updates on plant-based protein products as an alternative to animal protein: Technology, properties, and their health benefits. Molecules, 28(10), Article 4016. https://doi.org/10.3390/molecules28104016
- Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4), 320–329. https://doi.org/10.1016/j.fshw.2019.11.006
- Bakhsh, A., Lee, S.-J., Lee, E.-Y., Sabikun, N., Hwang, Y.-H., Joo, S.-T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), Article 560. https://doi.org/10.3390/foods10030560
- Yegrem, L. (2021). Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.). International Journal of Food Science, 2021(1), Article 5570753. https://doi.org/10.1155/2021/5570753
- Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, Article 100520. https://doi.org/10.1016/j.gfs.2021.100520
- Begum, N., Khan, Q. U., Liu, L. G., Li, W., Liu, D., Haq, I. U. (2023). Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10, Article 1218468. https://doi.org/10.3389/fnut.2023.1218468
- Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
- Finnigan, T. J. A., Theobald, H. E., Bajka, B. (2024). Mycoprotein: A healthy and sustainable source of alternative protein-based foods. Annual Review of Food Science and Technology, 16. https://doi.org/10.1146/annurev-food‑111523-121802
- Farid, M. S., Anjum, R., Yang, Y., Tu, M., Zhang, T., Pan, D. et al. (2024). Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends in Food Science and Technology, 149, Article 104529. https://doi.org/10.1016/j.tifs.2024.104529
- Boukid, F., Hassoun, A., Zouari, A., Tülbek, M. Ç., Mefleh, M., Aït-Kaddour, A. et al. (2023). Fermentation for designing innovative plant-based meat and dairy alternatives. Foods, 12(5), Article 1005. https://doi.org/10.3390/foods12051005
- Mohamed, D. E., Alian, A. M., Mohamed, R. M. (2024). Optimization of production and evaluation of Microbial kojic Acid obtained from Sugarcane Molasses (SCM) by Aspergillus sp. Food Systems, 7(1), 71–76. https://doi.org/10.21323/2618-9771-2024-7-1-71-76
- AOAC (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, MD: Gaithersburg, MD, USA
- Mohamed, R. M., Bazaraa, W. A., Alian, A. M., El-Shimi, N. M. (2021). New application of microbial l-glutaminase as a flavor enhancing agent in beef burgers. Theory and Practice of Meat Processing, 6(4), 375–380. https://doi.org/10.21323/2414-438x‑2021-6-4-375-380
- El-Beltagi, H. S., El-Mogy, M. M., Parmar, A., Mansour, A. T., Shalaby, T. A., Ali, M. R. (2022). Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peels extract in maintaining the quality of nile tilapia fish fillet. Antioxidants, 11(5), Article 906. https://doi.org/10.3390/antiox11050906
- Grasso, N., Lynch, N. L., Arendt, E. K., O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878
- Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S. et al. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, Article 103306. https://doi.org/10.1016/j.jfca.2019.103306
- Ereifej, K. I., Al-Karaki, G. N., Hammouri, M. K. (2001). Seed chemical composition of improved chickpea cultivars grown under semiarid Mediterranean conditions. International Journal of Food Properties, 4(2), 239–246. https://doi.org/10.1081/jfp‑100105190
- Xiao, S., Li, Z., Zhou, K., Fu, Y. (2023). Chemical composition of kabuli and desi chickpea (Cicer arietinum L.) cultivars grown in Xinjiang, China. Food Science and Nutrition, 11(1), 236–248. https://doi.org/10.1002/fsn3.3056
- Krüzselyi, D., Kovács, D., Vetter, J. (2016). Chemical analysis of king oyster mushroom (Pleurotus eryngii) fruitbodies. Acta Alimentaria, 45(1), 20–27. https://doi.org/10.1556/066.2016.45.1.3
- Oluwafemi, G. I., Seidu, K. T., Fagbemi, T. N. (2016). Chemical composition, functional properties and protein fractionation of edible oyster mushroom (Pleurotus ostreatus). Annals: Food Science and Technology, 17(1), 218–223.
- Fukagawa, N. K., Yu, Y. -M. (2009). Nutrition and metabolism of proteins and amino acids. Chapter in a book: Introduction to Human Nutrition. A John Wiley and Sons, 2009.
- Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100, 437S‑442S. https://doi.org/10.3945/ajcn.113.071472
- Melina, V., Craig, W., Levin, S. (2016). Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025
- Leser, S. (2013). The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutrition Bulletin, 38(4), 421–428. https://doi.org/10.1111/nbu.12063
- Senanayake, D., Torley, P. J., Chandrapala, J., Terefe, N. S. (2023). Microbial fermentation for improving the sensory, nutritional and functional attributes of legumes. Fermentation, 9(7), Article 635. https://doi.org/10.3390/fermentation9070635
- Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., Schutyser, M. A. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies, 59, Article 102269. https://doi.org/10.1016/j.ifset.2019.102269
- De Pasquale, I., Verni, M., Verardo, V., Gómez-Caravaca, A. M., Rizzello, C. G. (2021). Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods, 10(1), Article 182. https://doi.org/10.3390/foods10010182
- Sáez, G. D., Sabater, C., Fara, A., Zárate, G. (2022). Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. Journal of Applied Microbiology, 133(1), 181–199. https://doi.org/10.1111/jam.15401
- Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, 112453. https://doi.org/10.1016/j.foodres.2022.112453
- Xiao, Y., Huang, L., Chen, Y., Zhang, S., Rui, X., Dong, M. (2016). Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CyTA-Journal of Food, 14(4), 621–631. https://doi.org/10.1080/19476337.2016.1188157
- Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, Article 112453. https://doi.org/10.1016/j.foodres.2022.112453
- Kumitch, H. M., Stone, A., Nosworthy, M. G., Nickerson, M. T., House, J. D., Korber, D. R. et al. (2020). Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry, 97(1), 104–113. https://doi.org/10.1002/cche.10234
- Lee, Y. H., Lee, N. R., Lee, C. H. (2022). Comprehensive metabolite profiling of four different beans fermented by Aspergillus oryzae. Molecules, 27(22), Article 7917. https://doi.org/10.3390/molecules27227917
- Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as Strategy for Improving Nutritional, Functional, Technological, and Sensory Properties of Legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
- Alrosan, M., Tan, T. C., Koh, W. Y., Easa, A. M., Gammoh, S., Alu’datt, M. H. (2023). Overview of fermentation process: Structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Critical Reviews in Food Science and Nutrition, 63(25), 7677–7691. https://doi.org/10.1080/10408398.2022.2049200
- Razavizadeh, S., Alencikiene, G., Salaseviciene, A., Vaiciulyte-Funk, L., Ertbjerg, P., Zabulione, A. (2021). Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247(9), 2379–2389. https://doi.org/10.1007/s00217-021-03798-8
- Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
- Akram, S., Afzal, M. F., Anwer, K., Farman, L., Zubair, M., Kousar, S. et al. (2024). Nutraceutical properties, biological activities, and industrial applications of chickpea protein. Cogent Food and Agriculture, 10(1), Article 2338653. https://doi.org/10.1080/23311932.2024.2338653
- Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products — Insight and challenges. Foods, 11(7), Article 957. https://doi.org/10.3390/foods11070957
- Szenderák, J., Fróna, D., Rákos, M. (2022). Consumer acceptance of plant-based meat substitutes: A narrative review. Foods, 11(9), Article 1274. https://doi.org/10.3390/foods11091274
- Cordelle, S., Redl, A., Schlich, P. (2022). Sensory acceptability of new plant protein meat substitutes. Food Quality and Preference, 98, Article 104508. https://doi.org/10.1016/j.foodqual.2021.104508
Supplementary files
